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This paper presents a summary of SciAutonics-Auburn Engineering’s efforts in the 2005
DARPA Grand Challenge. The areas discussed in detail include the team makeup and
strategy, vehicle choice, software architecture, vehicle control, navigation, path planning,
and obstacle detection. In particular, the advantages and complications involved in field-
ing a low budget all-terrain vehicle are presented. Emphasis is placed on detailing the
methods used for high-speed control, customized navigation, and a novel stereo vision
system. The platform chosen required a highly accurate model and a well-tuned navi-
gation system in order to meet the demands of the Grand Challenge. Overall, the vehicle
completed three out of four runs at the National Qualification Event and traveled 16 miles
in the Grand Challenge before a hardware failure disabled operation. The performance
in the events is described, along with a success and failure analysis.
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1. INTRODUCTION

The 2005 DARPA Grand Challenge was a competition
to spur the development of autonomous ground ve-
hicle capabilities. It consisted of a 132 mile course
that had to be completed in less than 10 h by vehicles
with no human intervention. The course was mostly
desert terrain including dry lake beds, rough roads,
long tunnels and underpasses, and numerous ob-
stacles. Initially, 195 teams entered the Challenge; 43
were invited to the National Qualification Event
�NQE�. SciAutonics-Auburn Engineering was one of
23 teams chosen from these semifinalists to compete
in the final 132 mile course.

SciAutonics formed to compete in the initial
DARPA Grand Challenge in 2004. The core technical
team was initially comprised mainly of engineers at
Rockwell Scientific Corporation �RSC� and received a
large portion of its funding from RSC. ATV Corpo-
ration donated the vehicle platform and a second test
vehicle, and provided continual technical support
throughout the project. Auburn University joined the
team to develop the vehicle control and navigation
aspects of the system �Behringer, Gregory et al., 2004�.
In 2005, the team name changed to SciAutonics-
Auburn Engineering, and more collaborators joined
to complement the existing expertise. Seibersdorf Re-
search provided a stereo vision system for object de-
tection and road segmentation. The City of Thousand
Oaks was also a partner, providing an area of land for
performing vehicle tests and the required DARPA site
visit.

This paper discusses the SciAutonics-Auburn En-
gineering effort in the DARPA Grand Challenge 2005.
In particular, it covers both the components that com-
prised the entry vehicle and the strategies that al-
lowed the team to compete successfully in the Chal-
lenge. Particular emphasis is placed on the
localization, obstacle detection, and vehicle control
algorithms.

1.1. System Development Strategy

A system that exhibits autonomous driving capabil-
ity is, by its very nature, quite complex and consists
of subsystems with a high degree of interdepen-
dence. Since the team was mostly a volunteer effort
comprised of people working on this project in their
spare time, it was a challenge to map the system

structure onto the various team members in a way
that was efficient and could allow the team members
to work on subtasks independently.

The vehicle team initially set up the hardware:
Vehicle components and the lowest level actuation
controllers. This could be done relatively indepen-
dently as other subteams addressed different techni-
cal challenges. As the hardware implementation pro-
gressed, the work on the control system became
more relevant. Two students from Auburn Univer-
sity worked remotely on identifying the vehicle
model for throttle and steering control, as well as the
navigation algorithm. The sensor team addressed
the feasibility of sensor systems and performed in-
dependent sensor tests and characterization in
desert conditions. ATV Corporation gave the team
access to a second vehicle, which had the same driv-
ing characteristics but was not equipped with any
means for automatic driving. This vehicle served as
a platform for mounting and testing sensors while
not removing the capability to manually drive. The
software team built the framework for communica-
tion, sensor data acquisition, and processing. The in-
telligent behavior subteam addressed the issues re-
lated to the design of the autonomous concept, such
as path planning and obstacle avoidance.

The team met regularly on evenings and week-
ends to test, implement, and integrate the different
modules in the complete system context. Trials were
performed at the Lang Ranch area, where the City of
Thousand Oaks had given permission to conduct
these tests.

1.2. Entry Vehicle

A small all-terrain vehicle �ATV� platform �Figure 1�
was chosen for the entry vehicle due to its size, agil-
ity, and ruggedness �Behringer, Sundareswaran et
al., 2004�. The Prowler by ATV Corp. is an ATV
modified for military use that is equipped with a
660 cc Yamaha engine, enhanced suspension, full
roll cage, run-flat tires, and cargo rack. This combi-
nation of power, ruggedness, and useable space
proved to be an excellent foundation for an off-road
autonomous vehicle. The 1,000 lb payload capacity
and heavy duty suspension handled the multitude
of motors, sensors, and computers that were
mounted on the cargo rack and in the roll cage. The
independent suspension with 8–9 in. of travel, and
high 12.5 in. ground clearance, allowed the vehicle
to traverse difficult terrain with relative ease.
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Modifications were made to the ATV, dubbed
RASCAL �Robust Autonomous Sensor Controlled
All terrain Land vehicle�, for automation. A servo-
motor was installed in the engine bay and attached
to the steering system to actuate the front wheels.
The motor output, 6.5 ft lb of torque, was fed into a
14:1 gearbox, placing a total of 90 ft lb of torque on
the steering rack. The throttle, brake, and gear were
controlled with smaller servos, which output 27 ft lb.
All of the servos were directed by microcontrollers,
which communicated with a computer via serial
ports. An emergency stop mechanism, with ultimate
authority over the microcontrollers, was wired in se-
ries to the vehicle’s power and the brake and throttle
servos to eliminate the possibility of losing control of
the vehicle in the event of a software or hardware
failure. Two 15 gallon gas tanks were added to the
side of the ATV and gave RASCAL more than
enough fuel to finish the course. Two 2,000 W gen-
erators provided additional power needed to oper-
ate the on-board electronics. An enclosure mounted
in the rear contained the delicate hardware.

2. SOFTWARE ARCHITECTURE

2.1. Autonomous System Concept

One of the main ideas in the autonomous system
was the modularity of the architecture �Behringer et
al., 2005�. The vehicle control and GPS/INS naviga-
tion were the core modules providing the basic au-
tonomous functions. The other modules were “op-
tional add-ons” �Figure 2�. They provided

information about the environment, as well as ob-
jects to be avoided. If these modules were discon-
nected or failed, the core vehicle control still contin-
ued to operate using solely GPS and inertial input
for computing the control output. Of course, in this
mode, the vehicle operated blindly; therefore, the
maximum speed was reduced to 2 m/s, a compro-
mise between avoiding heavy damage in a collision
and being able to continue driving to fulfill the given
mission.

2.2. Software Structure

The software was structured to allow easy partition-
ing among physical central processing units �CPUs�
and offline debugging. The overall structure of the
software was a collection of modules running as in-
dependent processes in the Linux operating system.
The modular design allowed fault isolation and par-
allel development of the modules. A network was
set up to allow communication between the mod-
ules, via a user datagram protocol �UDP� �Postel,
1980� with timeouts for detecting fault conditions,
but no acknowledgements. Running each module as
a process provided CPU and memory usage isola-
tion, as well as easy partitioning among the physical
processing units. This was important as the CPU uti-
lization of each module was not known in advance.
The easy partitioning also allowed all modules to be
run on a single system for debugging, or any one
module to be run on a debug system on or off the
vehicle, as long as it was on the vehicle network. For
the events, two laptops were used to run the vehicle.

Linux was chosen as the operating system for a
number of reasons. It provided acceptable real-time

Figure 1. RASCAL.

Figure 2. System architecture for autonomous driving on
RASCAL.

Travis et al.: SciAutonics-Auburn Engineering • 581

Journal of Field Robotics DOI 10.1002/rob



behavior; while the default 2.6 kernel is certainly not
a hard real-time kernel, it provided consistent cycle
times for control loops and good isolation of the pro-
cesses from one another. Linux could also be run on
developer desktops, as well as the actual vehicle,
which improved development efficiency. With the
use of the Gazebo simulator �Koenig & Howard,
2004� and tools for playing back recorded vehicle
data, much of the debugging and development
could be carried out on individual laptops; so devel-
opment work could continue when the vehicle was
not available. During vehicle test sessions, results
from one run could be analyzed and changes could
be made, while a different set of tests were running
on the vehicle.

The real-time nature of the vehicle did result in
some challenges, and highlighted some of the limi-
tations of Linux for this application. In some cases,
code modules would go into tight loops due to bugs.
This would cause other modules running on the
same CPU to get insufficient processor time. In other
cases, too many modules or overly complex algo-
rithms were run, again using too many CPU cycles.
The control loops, starved of cycles, would either
timeout or in borderline cases not behave as desired.
A more interesting case was when one of the CPUs
would reduce its frequency based on temperature
limits. The behavior would be correct in most cases;
but for this application, the system would not have
enough CPU cycles to complete all tasks. A hard
real-time operating system would limit the impact of
these issues to only one process. However, if that
process was a key process �as it often was� the ve-
hicle would still be disabled. Debugging these issues
required looking at the timestamps of messages
passed between the modules.

3. LOCALIZATION

3.1. Hardware

RASCAL contained a variety of sensors to determine
states critical to the vehicle controller, such as posi-
tion, heading, and speed. A strategy of redundancy
was employed to provide measurements from some
sensors when others were not available or in the
event of the failure of a particular sensor.

The cornerstone of vehicle localization was a
single antenna Navcom differential global position-

ing system �DGPS� receiver with Starfire corrections
broadcast by Navcom. It generated unbiased mea-
surements of position �north and east�, velocity
�north, east, and up�, and course at 5 Hz. It is impor-
tant to note that vehicle course is the angle from
north created by the vehicle’s velocity vector, not the
vehicle’s pointing vector. With the corrections broad-
cast by Navcom, this GPS receiver is capable of pro-
ducing position measurements accurate to less than
10 cm. However, the output rate of the receiver was
too low to adequately control the vehicle.

An inertial measurement unit �IMU� was used to
obtain high update rate measurements. A Rockwell
Collins GIC-100 tactical-grade six degrees of free-
dom IMU measured translational accelerations and
angular rates at 50 Hz. These measurements, how-
ever, were inherently corrupted with biases and
noise. Dead reckoning with the unit provided ac-
ceptable results for a short period of time if the ini-
tial biases were eliminated. However, the biases did
not remain constant and therefore had to be continu-
ally updated and removed from the measurement to
provide a reliable navigation solution.

The ATV’s onboard speedometer was used as an
additional speed sensor. The output rate of this sen-
sor was dependent upon vehicle speed, so compen-
sation was needed to provide a more consistent
measurement to the controller. In addition, the mea-
surement was corrupted by wheel slip, which ap-
peared as a sudden large change in the bias. The
sensor also contained a calibration error that would
corrupt the speed estimate during a GPS outage.

Magnetometers are often used in aerial applica-
tions to provide orientation information. They sense
the earth’s magnetic field, thus all measurements are
referenced from magnetic north and not true north.
This difference can easily be calibrated and remains
fairly constant if the sensor remains in a region near
its calibration point. RASCAL utilized two magneto-
meters to measure the vehicle’s heading, roll, and
pitch angles. A TCM2 magnetometer provided
16 Hz measurements that contained high noise, but
a slow bias drift rate. A Microstrain 3DM-GX1 IMU
and magnetometer provided 50 Hz measurements
that had very little noise, but the bias drifted quickly
�the IMU was not used�. It was discovered that the
magnetometers could help initialize the navigation
algorithm, but once the vehicle started moving they
were of little use because the magnitude and drift
rate of their biases were greater than that of the
other sensors.
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3.2. Algorithms

Kalman filtering is a proven method for blending
measurements to eliminate various sensor deficien-
cies while utilizing the strengths of each sensor by
statistically weighting each measurement. The local-
ization algorithm used was an extended Kalman-
Bucy filter �EKF�, outlined in detail by Stengal
�1994�. This algorithm handled the system nonlin-
earities by continuously propagating the system
model to calculate the time update, and discretely
propagating the measurement update. The EKF
combined the bias-free low update GPS measure-
ments with the other measurements to produce a
bias-free high update �50 Hz� navigation solution.
An EKF is as accurate and less computationally in-
tensive as some higher-order filters if the sample
rate is high enough �St. Pierre & Gingras, 2004�. This
efficiency was an advantage with the algorithm be-
cause the 16 element state vector already imposed a
moderate computational burden. GPS and inertial
measurements were loosely coupled, meaning the
inertial errors were corrected with a computed GPS
solution. A tightly coupled system, where the GPS
pseudo-range measurements amend the IMU errors
�Farrell & Barth, 1999�, was considered, but due to
time constraints and the overall satisfaction with the
loosely coupled system, it was not constructed.

The estimated states were chosen to provide the
vehicle controller with the necessary position, veloc-
ity, and heading data; to fully orient the vehicle; and
to calculate sensor biases. The nonlinear differential
equations of the states are listed below �Eq. �1��, and
the variable definitions are described in Table I:

V̇ = ax − g� − g�g; �̇ = �̇meas − b�;

�̇ = r − br; ḃ� = 0;

ḃr = 0; �̇ = �̇meas − b�;

Ṅ = V cos���; ḃ� = 0;

Ė = V sin���; �̇g = 0;

ḃM�1 = 0;

ḃM�1 = 0;

ḃM�1 = 0;

ḃM�2 = 0;

ḃM�2 = 0;

ḃM�2 = 0.

�1�

These equations were continuously integrated in
the time update of the EKF. Noise terms do not ap-
pear in Eq. �1� because they are included in the time
update of the EKF by utilizing the process noise co-
variance matrix. Methods defined by Bevly �2004�

were used to derive these equations of motion. The
coordinate frame used is depicted in Figure 3.

The bias states have no dynamic response ac-
cording to the equations of motion, but in actuality,

Table I. Variable definitions.

V Velocity

� Heading

� Roll

� Pitch and longitudinal accelerometer bias

N North

E East

�g Road grade

b�r,�̇,�̇� Rate gyro bias �yaw, roll, pitch�

bM��,�,���1,2� Magnetometer bias
�heading, roll, pitch�
�TCM2,Microstrain�

g Gravity

ax Measured longitudinal acceleration

r Measured yaw rate

�̇meas
Measured roll rate

�meas Measured pitch rate

Figure 3. Vehicle body coordinates and reference frame.
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biases randomly drift over time. The process noise
covariance matrix included values for the bias states
to account for this random bias walk. These were
used as tuning parameters for the EKF because they
directly influenced the amount of filtering on the es-
timated states. The other entries in the matrix cap-
tured the system noise, which was determined dur-
ing static tests. The process noise covariance matrix
is a diagonal matrix with the covariances in Table II.
The time update in the EKF requires this matrix to
be continuous; therefore, the measured discretized
values are multiplied by the sample rate �dt� as pre-
sented by Stengal �1994�. This discrete to continuous
conversion is only valid for very small sample rates.

The discrete measurement update in the EKF
utilized statistically weighted measurements, from
the sensors listed in Section 3.1, to overcome integra-
tion errors. The measurement matrix was adjusted
accordingly depending upon the availability of the
different measurements. Two calculations were in-
cluded in addition to the raw sensor measurements.
GPS forward and vertical velocities were used to
solve for road grade �Eq. �2��, and linear equations of
vehicle roll as a function of lateral acceleration were
derived using knowledge of the vehicle’s dynamics
�Eq. �3��:

�g = tan−1�VGPS up

VGPSx
� �

VGPS up

VGPSx
, �2�

� =
1
g

�ay − V�r − br�� . �3�

Using these two measurements, the magnetometer
roll and pitch biases were observable. It should be
noted that the roll estimate contained the lateral ac-
celerometer bias because of the method defined in
Eq. �3�. With the existing sensor suite, there was no
measurement available to observe and remove the
lateral accelerometer bias.

Noise statistics were found by recording long
periods of static data. The covariance values shown
in Table III were loaded into the diagonal measure-
ment noise covariance matrix for use in the measure-
ment update.

3.3. Experimental Validation

The algorithm’s performance was evaluated based
on the amount of error during a simulated GPS out-
age. Two reasons for this evaluation method are as
follows: First, when enough satellites are in view
and the receiver is outputting valid messages, the
EKF successfully tracks the GPS measurements; and
second, a real GPS outage would eliminate the truth
measurement, degrading the accuracy of the error
analysis. Figure 4 is a plot of GPS and estimated
position during a test run. The circles signify the be-

Table II. Process noise statistics.

�az
2 =0.652dt �a

2=0.0381292dt �br
2 =10−10 �

�̇

2 =0.178512dt

�b�
2 =10−10

�
�̇

2=0.0881472dt �b�
2 =10−8 �N

2 =0.0000012dt

�E
2 =0.0000012dt �b�g

2 =10−7 �bM�1
2 =10−4 �bM�1

2 =10−6

�bM�1
2 =10−8 �bM�2

2 =0.01 �bM�2
2 =0.1 �bM�2

2 =0.1

Table III. Measurement noise statistics.

�V
2 =0.052 �VWS

2 =0.32 ��
2 = ��V/V�2 �N

2 =0.12 �E
2 =0.12

��g

2 = ��V/V�2 ��calc

2 =0.081352 �M�1
2 =0.199952 �M�1

2 =0.0244452 �M�1
2 =0.0362972

�M�2
2 =0.0032 �M�2

2 =0.0032 �M�2
2 =0.0032
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ginning and end of the outage, starting before the
first turn and concluding at the end of the straight
section.

Clearly, error growth occured at the onset of the
outage. Figure 5 is a plot displaying the magnitude
of the error. Over the 25 s outage, the vehicle was
traveling 3.2 m/s. The maximum error for this pe-
riod of time at this speed was slightly over 1.5 m.
Since the vehicle was required to remain in a 10 m
corridor, this level of error was acceptable.

The IMU and speedometer biases had the most
negative impact on the navigation solution. As
stated earlier, the magnetometers were not of much
use during a run, and were statistically weighted out
of the EKF after initialization. The tactical-grade
IMU contained mechanical rate gyros with a bias
drift rate of less than 1° per square-root-h, so the bias
error over this period of time is 1 min. The speed-
ometer contained a nonlinear scale factor that could
be estimated as a bias. However, when GPS was lost,
bias states were held constant because they were
nonobservable. If the vehicle slightly changed
speeds during an outage, this bias estimate would
have been incorrect. This specific algorithm without
the estimated bias state was compared with another
that included this bias state. It was determined there
was no benefit to including the bias state, because
the errors in both algorithms grew similarly. The
leading error source during this run was due to the
incorrect scale factor on the speedometer.

Another source of navigation error is vehicle
slip. Vehicle slip can disrupt a navigation algorithm
even in the presence of GPS. Longitudinal and lat-
eral slip occur on moving ground vehicles. Longitu-
dinal slip is generated by a difference in the vehicle’s
velocity and the wheel’s velocity, and lateral slip is
created when the vehicle translates laterally. Wheel
slip can corrupt the speedometer measurement by
causing a sudden jump in the estimated bias �if the
modeled bias dynamics have a high enough band-
width�. In addition, it reports a false speed value to
the Kalman filter, which can directly inject error into
the speed and position estimates. Sideslip also leads
to a less accurate estimate, because GPS and inte-
grated IMU measurements differ. The GPS course
measurement and an integrated yaw rate gyroscope
are typically used to estimate the vehicle’s heading.
In reality, the sensors are providing two different
measurements; the measurements just happen to be
similar for the majority of the time on ground ve-
hicles. GPS course �v� is the direction of the vehicle’s
velocity vector, while an integrated yaw gyro is the
direction of the vehicle’s pointing vector ��� when
roll and pitch angles are absent. Evidence of
sideslip-induced error can be seen in Figure 5 when
the vehicle enters a turn. Figure 6 is a plot of the
estimated heading when GPS is available. A discrep-
ancy due to sideslip can be seen between estimated
heading and GPS course. The error caused by ve-
hicle slip is seen on multiple estimated states and is

Figure 4. Position estimation during an artificial GPS
outage.

Figure 5. Position error growth during a GPS outage.
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influenced by the initial tuning of the EKF. This phe-
nomenon is discussed more in depth by Travis
�2006�.

4. OBSTACLE DETECTION

One of the key tasks for RASCAL was to remain in the
predefined corridor while choosing the fastest
and/or easiest path through the corridor. Five sen-
sors were used to search for obstacles within the cor-
ridor: The stereo vision system �SVS� from
Seibersdorf Research and four SICK LMS-221 light
detection and ranging device �LIDAR� units as
shown in Figure 1.

4.1. Stereo Vision

4.1.1. Hardware

A high-performance embedded platform was chosen
as the processing unit for the vision system. A sealed
camera box, hardware platform, and pair of cameras
with a 300 mm fixed baseline were the three main
components comprising the embedded vision sys-
tem. Figure 7 shows the system mounted on
RASCAL during test runs in the desert. Two com-
munication types were necessary for operation. One
was the communication with RASCAL, especially
with the path planner software module, and the

other was communication with the cameras. The
communication of the stereo sensor system with
RASCAL was carried out using 100 mbits Ethernet;
the messages were sent via UDP packets. The cam-
eras were controlled with the DCAM standard 1.31
using the IEEE1394a FireWire bus. The images ac-
quired from the cameras were also transferred using
the FireWire bus.

4.1.2. Algorithms

The obstacle detection algorithm detected relevant
objects within the field of view. It used a predictive
variant of the V-disparity algorithm �Labayrade,
Aubert & Tarel, 2002�, which provided a coarse grid
for searching the disparity space efficiently based on
prior knowledge about vehicle state and road geom-
etry. This met real-time constraints with a processing
time of about 20 ms for two images of 640
�480 pixels. The algorithm consisted of two mod-
ules: Pitch determination and obstacle detection.
First, the pitch was determined from the vertical
movements of far objects. Second, the ground plane
was determined using this pitch information. Third,
obstacles were detected that were above the ground
plane and met constraints of width and height.
Hence, this method combined dynamic pitch deter-
mination based on image features and the detection
of obstacles near the ground plane.

4.1.2.1. Pitch Determination

Vehicle pitch was defined with respect to world co-
ordinates. For obstacle detection, the relative pitch
with respect to the road surface was relevant, not the

Figure 6. Vehicle heading and discrepancies due to
sideslip.

Figure 7. The stereo vision system mounted on RASCAL.
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absolute pitch. Since the relative pitch depends on
the scene in front of the vehicle, it cannot be deter-
mined from vehicle dynamics or GPS data only. An
algorithm was developed to determine relative pitch
from the image sensor by tracking vertical changes
of image features for a specified region of interest
�ROI�.

The relative pitch was defined by the vertical
angular difference between the optical axis, i.e., the
axes perpendicular to the image plane and the track
to be followed on the terrain in front of the vehicle.
As the relative pitch was defined with respect to the
elevation of the track to be followed, it could be
shown that the long-term average relative pitch for
reaching a point is zero. In fact, for RASCAL,
changes in pitch �absolute or relative� were domi-
nated by angular vibrations of the vehicle itself.
These changes included the camera system with re-
spect to the wheels due to a vibration isolation sys-
tem. Such system vibrations were typically periodic
and corresponded primarily to changes in velocity.
Figure 8 shows an example of the change of the es-
timated pitch, which was dominated by the vehicle
dynamics. The solid line indicates the change of
pitch during a typical test that included velocity
variations; the dashed line indicates the average. As
seen in Figure 8, pitch varied around a constant
equilibrium position, depending only on the camera
mount.

Assuming planar terrain geometry and change
in pitch due to vehicle vibrations, the relative pitch

could be determined by summing changes in the
relative pitch and correcting it with its long-term av-
erage. The pitch determination module was imple-
mented by choosing a ROI in the center of the field
of view, which predominantly consisted of objects
near the horizon or the horizon itself. In the case of
high obstacles and terrain elevations at about cam-
era height, the change in vertical position due to the
vehicle movement in the forward direction was
given by the following:

�zvehicle = f
�z
x

, �4�

where �zvehicle was the vertical change of objects in
image coordinates and f was the focal length in pix-
els. z and x were the vehicle coordinates as shown in
Figure 3. �zvehicle could be calculated as follows:

�zvehicle = �z2 − z1� = f · H� 1
x − �x

−
1
x
�

= f · H
�x

x�x − �x�
, �5�

where H was the camera height above the ground
plane and �x was the forward change in position of
the vehicle; z1 and z2 were positions of an obstacle at
t=1 and t=2, respectively. For this region, the hori-
zontal edges were determined using a gradient filter,
and for three horizontally divided subregions, a vec-
tor was determined with the edge density as a func-
tion of the vertical image position. For each region,
these vectors were matched between two
subsequent frames and the total vertical shift was
given by

�z = �zvehicle + �zpitch,

�z � �zpitch, �6�

where �zpitch was the vertical shift of image features
due to the pitch change between two subsequent
frames. The relative pitch was determined by inte-

Figure 8. Pitch determination with stereo vision cameras.
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grating �z over time and each 10 frames correcting
with the average value of the previous 30 frames.

4.1.2.2. Obstacle Recognition

It was assumed the path trajectory basically fol-
lowed a drivable track or road. Obstacles that would
naturally block the trajectory, such as ravines, rock
faces, or landslides, were not to be expected. Ex-
pected obstacles included objects, natural or not,
which were put there by man. Such obstacles, con-
sisting of boxes, vehicle tires, traffic cones, trunks,
etc., were of limited size and shape, i.e., artificial to
their surroundings.

Compactness, together with positioning, de-
scribed the size and position of the evaluation win-
dow. Typical object sizes were 75�75 cm, positioned
on the ground plane. Using the epipolar geometry
and assuming a minimal detection range of 10 m
and a minimal window size of 10�10 pixels in the
image, relevant disparities ranged from a 26- down
to 4-pixel shift between the left and right images.

The pronouncement of objects was given by the
strengths of its edges. For the matching of images
with a horizontal baseline, only vertical edges were
relevant; the horizontal edge strength was omitted.
Edges were determined using a gradient filter, as
with the pitch determination. For each time instance,
t, and evaluation window, the correlation between
the left and right edge image was determined, pro-
viding a matrix Ct�y ,d� consisting of 114�23 ele-
ments, for each horizontal image position �y� and
disparity value �d�.

The object stability was determined by tracking
different modes in Ct−2�y ,d�, Ct−1�y ,d� and Ct�y ,d�,
considering a constant velocity, and the reciprocal
relation between the distance and disparity value.
Objects, whose summed correlation exceeded an
adaptive threshold, were included as obstacles. Fig-
ure 9 shows the left and right images with three ob-
stacles, and the projected horizon from pitch deter-
mination �horizontal line�. Each of the three
obstacles within range was detected, as indicated
with dashed rectangles in the right image of Figure
9. The lower plot is an example of the correlation
magnitude for 2,622 image regions at different dis-
parity values; between 4 �far end� and 26 �near end�.
A dark color indicates a high correlation result for
the specific window.

4.2. LIDAR

4.2.1. Hardware

A LIDAR sends pulses of infrared light and records
the reflection time and intensity to measure the dis-
tance and angle to an object. The scans range from 0°
to 180° at 75 Hz to produce a two-dimensional im-
age of the environment in polar coordinates. The
range of the scan is adjustable in software, and can
reach 80 m if desired.

Two of the LIDARs were mounted above the
front tires to scan vertically, one was mounted on
RASCAL’s “hood” so that the scanned line was par-
allel to the ground �horizontal LIDAR�, and one was
mounted below the hood so that the scanned line
intersected the ground at approximately 5 m in front
of the vehicle. Each sensor data set was processed by
an algorithm specialized to that sensor/orientation,
and the processed data were sent to the path
planner.

4.2.2. Algorithms

The horizontal LIDAR was processed to filter out
grass and weeds while still detecting actual ob-

Figure 9. Left and right camera images �top� with corre-
lation magnitude �bottom�.
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stacles. This was done based on three principles.
First, weeds did not present a consistent surface as
an obstacle or berm. Within a LIDAR scan line, the
points could be checked if the distances for adjacent
points were within a threshold of one another. Sec-
ond, the LIDAR image of the weeds varied as the
vehicle moved. A solid object provided a consistent
LIDAR return from scan to scan while weeds varied
dramatically as different stalks were hit based on the
angle. By comparing multiple consecutive scans,
weeds could be differentiated from real obstacles
based on the correlation between scans. Third,
weeds �at least small ones� tended to be narrow
while obstacles �fence posts, trees, telephone polls,
cars, berms, etc.� were wide. LIDAR scans that
showed very narrow obstacles ��5 cm� were consid-
ered weeds. While the techniques were quite effec-
tive, it was important to be aware of the limitations.
A thin steel pole �0.7 cm in diameter�, as used for an
electric fence, would be considered a weed. In this
application, driving over a steel pole would not
harm RASCAL; but in other applications, knocking
down fences that may contain livestock would be
discouraged.

Figure 10 shows an obstacle map on a section of
a test track with and without weed filtering. The
only real obstacles on the course are the cylinders
seen in the photo. The arrow on the graphs indicates
the direction of the vehicle; the circles represent the
cylinders.

When RASCAL pitched up, the downward-
facing LIDAR was processed as if it were a horizon-
tal LIDAR. Normally, the downward-facing LIDAR
saw the ground approximately 5 m in front of
RASCAL, and was processed to reject debris thrown
up by the front wheels and to detect berms or
dropoffs on the edges of the road. The vertical
LIDARs were similarly processed to detect obstacles
and dropoffs in front of the vehicle.

4.3. Experimental Validation

The obstacle detection systems were evaluated in
many stand-alone tests; however, the real testing
and experimental verification of robust and correctly
working algorithms could only be carried out dur-
ing realistic trials. The NQE �described below� of-
fered the opportunity to verify the obstacle detection
in real-world scenarios. Under these conditions,

Figure 10. Filtered and unfiltered LIDAR data �top� of
obstacles �bottom�.
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there were several differences between the detection
capabilities of the LIDAR and stereo vision systems.

Figure 11 shows the tunnel section and the de-
tected obstacles of the NQE. Obstacles that were de-
tected by the stereo vision sensor are represented by
light dashes, and the obstacles detected by the
LIDAR are shown with dark lines. Pictures captured
by a webcam mounted in front of RASCAL, are also
depicted. Picture No. 1 shows the hay bales; these
obstacles were only seen by the SVS because they
were too low for the LIDAR to perceive. The SVS
was able to detect the hay bales if they had any ver-
tically edges in their textures. The left �lower� hay
bale border had a long consistent shadow; therefore,
detection was not consistent. However, on the right
side, more visible transitions between the hay bales
existed, and thus more obstacles were detected. Pic-
ture No. 2 shows the tunnel entry, which was only
seen by the LIDARs. The stereo vision sensor was
not able to detect this as an obstacle, because the
algorithm was configured to detect obstacles with a
width less than 1 m. Picture No. 3 shows the inside
of the tunnel, and picture No. 4 displays the exit
point of the tunnel. In the tunnel, the stereo vision
sensor detected a “ghost obstacle.” This happened
because of the sunbeams that shone through a crack
in the tunnel. In picture No. 5, the two detected
cones that were placed on the exit of the tunnel can
be seen. The repeated detection of cones �more than
one line per cone� was due to the vibrating sensor
head. The vibrating differences between the left and
the right cameras created differences in distance
calculations.

5. PATH PLANNING

5.1. Initial Path

The initial route definition data file, given to the
team by DARPA, had points spaced variably from a
few meters out to hundreds of meters. The control
algorithms needed more consistent information than
this offered. Two approaches were used to generate
the nominal path that the vehicle would follow
through DARPA’s corridor: Speed optimization and
map tuning. The speed optimization worked on the
principle of maximizing the attainable speed, while
staying within the corridors defined by DARPA. To
this end, a path made up of a series of lines and arcs
was generated. This path took into account the turn-
ing capability, acceleration, deceleration, and maxi-
mum speed of RASCAL to minimize the time
through the course. Each line/arc segment included
information about allowable speed, as well as posi-
tion. The mapping team then adjusted the path
based on map data, such as location of roads, cliffs,
etc. The map tuning also included modifications of
allowable speed to account for such factors as pass-
ing through and exiting tunnels, etc. As the vehicle
traversed the course, this initial path was modified
to take into account previously unknown obstacles.

5.2. Path Regeneration

The processed output of the five obstacle detection
sensors was used to modify the initial path as
RASCAL drove. The processed output of each sen-
sor was a set of obstacles and a weight associated
with each obstacle. That weight was an indication of
how likely it was that RASCAL would need to avoid
the obstacle. For example, in the LIDAR weed filter-
ing, items that passed the filter were given a high
weight, while items categorized as weeds were
given a very low weight. The intent was to always
avoid real obstacles, but not to drive through weeds
if a perfectly clear path was also available.

The currently planned path was then compared
against the list of obstacles. This list contained a glo-
bal map of the obstacles currently in sight, as well as
past obstacles that had moved out of view. If RAS-
CAL was on a path that would intersect an obstacle,
a new path was produced. A number of alternative
paths were generated using several different meth-
ods. One method generated the sharpest possible
turns based on the current velocity and deceleration

Figure 11. Section with the tunnel from NQE Run 3.
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capability of the vehicle. This allowed the vehicle to
avoid near obstacles in the shortest distance pos-
sible. Other alternative paths were generated that
gradually shifted the current path to the left and
right, again taking into account the vehicle velocity.

The alternative paths and the original path were
then scored. Paths that would certainly take
RASCAL out of bounds were eliminated. Since the
position is not known precisely, paths that might
have taken RASCAL out of bounds, or nearly out of
bounds, were penalized based on an estimated posi-
tion error, i.e., paths that came closer to the corridor
boundary were penalized. Paths that would have
taken longer to traverse the same distance were pe-
nalized. Paths that went through low probability ob-
stacles were penalized. Paths that intersected high
probability obstacles were rejected. All of the paths
were then ranked, and the best was chosen. If no
path was found that was above a threshold, the cur-
rent path was held and velocity was reduced to
1 m/s. RASCAL would then continue to look for al-
ternative paths, while traveling at a safe speed. This
fall-back state was incorporated to handle false ob-
stacles, so that RASCAL could continue even with
uncertain sensor data. Further work was planned to
integrate ultrasonic and contact sensors to discrimi-
nate between false and real obstacles, but was not
implemented.

6. VEHICLE CONTROL

The vehicle control module consisted of three parts:
Path interface, speed control, and heading control.
The path interface took the path segment from the
path planner module, and determined where the ve-
hicle should drive based on the vehicle’s position, ori-
entation, and speed. The speed and heading control
then took this information and determined what
throttle and steering inputs to apply to the vehicle.

6.1. Path Interface

The path planner module sent a series of waypoints
to the vehicle controller. Each waypoint contained a
position and desired speed. The vehicle’s current po-
sition was known from the navigation solution. Us-
ing the current position and path segment, a way-
point to drive toward was chosen. The waypoint
chosen had to meet two conditions, illustrated in
Figure 12. First, it had to be in front of the vehicle,

and second it had to be at least a given distance from
the vehicle. If no waypoints satisfied these two cri-
teria, RASCAL slowly circled to find a valid point.
This distance increased with speed and made the
steering smoother by effectively adding damping to
the heading controller. Humans have a similar re-
sponse: At low speeds, focus is near the front of the
vehicle; as the speed increases, however, it becomes
necessary to look further ahead.

Once the point was chosen, a heading error was
computed as the angle between the vehicle heading
and the line from the vehicle to the chosen way-
point. Speed error was also computed as the differ-
ence in the desired and actual speed. These errors
were fed to the speed and heading controllers.

This method of path following �waypoint track-
ing� does have limitations. In particular, because of
the necessity to look ahead to upcoming points, it
can turn too tightly on corners—particularly tight
ones—causing oscillations as the error is reduced.
The fact that the look ahead distance is reduced with
speed mitigates this problem to a large degree; for
tight corners, the car is already moving slowly, thus
not looking ahead much, and not cutting the corner.
Another problem may arise if the vehicle is signifi-
cantly off the path. In this situation, the controller
tends to drive straight toward the nearest point on
the path, instead of smoothly merging onto the path,
possibly leading to oscillation about the desired
path. However, this method of designating the path

Figure 12. Vehicle control waypoint selection geometry.
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allows the steering controller to be much more ro-
bust to uncertainties or changing parameters in the
vehicle model.

6.2. Speed Controller

The speed controller set the throttle position to drive
the speed error to zero. Braking was also used to
slow the vehicle; however, because the brakes were
either on or off �not progressive�, they were only
used in more extreme situations. The dynamics,
from throttle position to vehicle speed, are generally
modeled as a first-order lag described by a DC gain
and a time constant. The time constant was identi-
fied by performing step inputs into the system; from
a stop, the throttle was set to a known position, and
the time to reach a percentage of the steady-state
speed was recorded. In general, this method should
also identify the DC gain of the system, but the drive
train of RASCAL contained a continuously variable
transmission �CVT� making the DC gain variable.
The CVT, along with other engine/vehicle dynam-
ics, make the time constant also somewhat depen-
dent on speed.

Once a rough time constant and DC gain were
identified, the controller was designed to obtain a
smooth yet responsive reaction to disturbances or
changes in desired speed. The controller was a PI
type. The integrator was needed to counteract the
uncertainty in the DC gain. Special care was taken to
ensure the integrator did not wind up and harm the
engine or drive train. In particular, a limit was
placed on the integrated error, and the error did not
accumulate unless the actual vehicle speed was
within a bound of the desired speed. This bound
was tuned based on the uncertainty in the DC gain.

6.3. Heading Controller

The heading controller was more complicated than
the speed controller. The complication was due to
the dynamics between steer angle ��� and yaw rate
�r�; heading ��� simply added an integrator to the
system �Figure 3�. The simplest model that captures
all of the important lateral vehicle dynamics is a
second-order model with one zero as shown below:

r
�

=
k�s + n�

s2 + 2	
ns + 
n
2 . �7�

The coefficients in the transfer function needed
to be identified through dynamic testing. To capture
the full range of the vehicle’s response, a wide range
of frequencies needed to be applied as inputs; a
chirp signal was used to meet this requirement. To
fit the data, an ARMAX model �Ljung, 1999� pro-
duced the least residual errors. One frequency re-
sponse, along with its fit, is shown in Figure 13. The
small gain is due to the steer angle input being in
counts applied to the servo; 32,000 counts were ap-
proximately 30° at the tire. The chirp signal stopped
at 7 Hz, meaning the experimental data above this
frequency are not valid. A higher-order model could
fit the data better; particularly, the higher frequen-
cies. However, in order to keep the controller simple,
the fit was left as second order.

Terrain and other varying parameters could also
create inaccuracies in the identified model. In gen-
eral, the parameters that capture vehicle models—
tire cornering stiffness, in particular—are assumed
to be terrain independent. The tire saturation force is
variable, but this does not become a factor, except in
extreme cases �Gillespie, 1992�.

One characteristic of vehicles is that the lateral
dynamic characteristics change with speed, so the
chirp input and fit were performed over a range of
constant speeds. The identified parameters as func-
tions of speed are shown in Figure 14. A curve fit
was applied to each of the identified parameters.
These curve fits were then used to design the

Figure 13. RASCAL open loop steering response.
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steering controller. It is interesting to note that the
trend of these parameters with velocity did not fol-
low that of typical models for ground vehicles, in
particular the bicycle model �Gillespie, 1992�. The
most likely cause was the size of the vehicle. The
natural frequency was higher than that of most
ground vehicles �2 Hz as opposed to 1 Hz�; this
meant that other typically ignored factors, such as
tire dynamics, were affecting the system response.

A PD controller was used to drive the heading
error to zero. As was previously mentioned, the

transfer function from steer angle to heading is
given by Eq. �7� with an additional integrator, mak-
ing it third order. Two states were fed back; heading
error and yaw rate error—therefore, two closed-loop
poles could be chosen for the system. Over the iden-
tified range, the PD gains were scheduled with ve-
locity, based on the parameter curve fits, to keep
these closed-loop poles constant. The third closed-
loop pole was floating; it was checked to guarantee
stability for the entire range of speeds. To account
for any model inaccuracies, the controller gains were

Figure 14. Steering parameters behavior with speed.
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conservatively designed. This also necessitated the
simpler path structure discussed earlier.

6.4. Experimental Validation

Figure 15 shows the response of the vehicle and
throttle controller to steps in the reference speed. In
general, the controller performed well; the error is
typically around 0.1 m/s. It is interesting to note
that the initial step �to 2.5 m/s� is overdamped,
while the other two �to 4 and 5.5 m/s� are under-
damped. The difference is due to the unmodeled dy-
namics moving the effective closed-loop pole and
the fact that the integrator is switching on and off
based on the magnitude of the speed error. The con-
troller was tested at much higher speeds �up to
18 m/s� and still performed with no noticeable
degradation.

Figure 16 shows a portion of the path created for
the application video required by DARPA, along
with laps run by RASCAL around this path. There
are some areas where RASCAL does not exactly fol-
low the desired path; after one particularly tight
high-speed corner, the error was 1 M. This error was
mostly due to look ahead in the steering controller
as discussed above. It could have been reduced with
a higher fidelity controller/vehicle model at the ex-
pense of robustness; however, with the parameters
defined by DARPA �i.e., typical corridor width�, the
error was deemed acceptable. The pass-to-pass re-

peatability was quite accurate; typically around
20 cm. RASCAL’s response to a given situation was
very predictable.

While the vehicle was at Auburn University, the
controllers were also stress tested for over 100 miles
at high speeds; between 25 and 40 mph. For a ve-
hicle the size of an ATV, these speeds were signifi-
cant, as they corresponded to a sports utility vehicle
traveling at highway speeds. These tests were con-
ducted without the obstacle detection algorithms in
order to concentrate on the behavior of the naviga-
tion and control modules alone. The error grew as
the speed increased, reaching 2 m at 40 mph; some
of this was due to an incorrect calibration in the
steering servo. However, at these speeds, RASCAL
would have been on a wide road during the Grand
Challenge, and that amount of error was acceptable.

7. RESULTS

7.1. NQE

The NQE was the final measure for entry in the
Grand Challenge. Of the 195 initial entrants, 43
teams successfully completed a preselection qualifi-
cation and participated at the NQE. After the NQE,
the best 23 teams got the opportunity to start the
Grand Challenge. The main goal of the NQE was to
complete four different tracks, each approximately
2.5 miles long. Figure 17 shows an aerial picture of

Figure 15. Controlled speed response.
Figure 16. Waypoint tracking response.
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an NQE track. In these tracks, DARPA officials com-
posed courses with different sets of obstacles that
could be found in the desert. Each track consisted of
a small hill, a high-speed section, a tunnel where the
GPS signal was blocked, gates, and several man-
made obstacles. The four tracks differed in types and
location of obstacles. A run consisted of 50 gates, a
tunnel section, and four or five obstacles. As pre-
sented in Table IV, RASCAL completed three of the
four runs in the NQE. This success rate allowed
RASCAL to be one of ten teams selected for early
qualification.

The initial run ended soon after the tunnel; Fig-
ure 18 shows the cause of the failure. The light thin
line indicates the estimated position from the local-
ization algorithm, and the light dots represent the
recorded GPS position. As expected, RASCAL lost
GPS immediately upon entering the tunnel and be-
gan to dead reckon to estimate position. The dead
reckoning worked exceptionally well for 2 min, dur-
ing which time RASCAL avoided several obstacles.
GPS measurements were reacquired as RASCAL
was initiating its obstacle avoidance procedure to
avoid a parked car. The GPS receiver incorrectly re-
ported its measurements—valid to within 10 cm. In-
stead, the position measurement was off by 10 m to

the north and east, and the velocities were reported
as pure zeros causing the localization algorithm to
crash. The addition of a few simple lines of code
ignored these false messages, at the expense of hav-
ing to dead reckon for approximately 4 min after a
GPS outage. Once this fix was applied, the remain-
ing NQE runs were successfully completed.

7.2. DARPA Grand Challenge

RASCAL was the tenth vehicle to start the 2005
Grand Challenge. It efficiently negotiated the first
segments of the course, passing two competitor ve-
hicles within the first few miles. The initial portion
of the course was smoothly traversed with no diffi-
culty. However, problems developed and officials
had to stop RASCAL because of severe performance
degradation 16 miles into the course. For the dura-
tion of the run, the vehicle traveled an average of
4.6 m/s, and reached maximum speeds of 11.5 m/s.
Although the vehicle was capable of operating at
higher speeds, the obstacle detection system could
not process the data reliably beyond 11 m/s. Figure
19 displays the whole course, along with a closeup
of the portion RASCAL completed.

After an analysis of the recorded data, the cause
of failure is fairly certain. Shortly before RASCAL
went off road, it lost all LIDAR data. Soon thereafter,
it lost all vehicle state data. The LIDAR and the in-
ternal sensors were connected via USB hubs to the
processing computers. Speculation is that one of the
following faults occurred and ended RASCAL’s day:
USB hubs lost power—terminating the connection
between the computer and sensors, or the USB hubs
overheated and ceased to function.

8. CONCLUSION

SciAutonics-Auburn Engineering, along with
Seibersdorf Research, managed to build a strong con-

Table IV. RASCAL NQE results.

NQE1 NQE2 NQE3 NQE4

Time Did not finish 16 min 14 min 14 min

Passed gates 22/50 46/50 48/50 48/50

Passed
obstacles

1/4 4/4 4/5 5/5

Figure 18. Dead reckoning through NQE Run 1.

Figure 17. Aerial picture of an NQE obstacle course.
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tender for the DARPA Grand Challenge 2005. A team
of volunteer engineers with limited resources man-
aged to stay competitive among teams with more
time, money, and resources. Out of 195 initial en-
trants, 23 teams started at the DARPA Grand Chal-
lenge, and five teams finished the race. The 16 mile
effort by RASCAL was the 16th longest run among
the remaining entrants. The vehicle successfully dem-
onstrated the cohesive hardware and software inte-
gration at the NQE, but minor events harmed the ve-
hicle’s endurance and ended its run in the 2005 Grand
Challenge.

The key to the Grand Challenge was not neces-
sarily the incredibly accurate sensing technology or
immense amounts of computing power. RASCAL
was able to detect and avoid the same obstacles as
teams with twice the number of sensors and consid-
erably more than twice the computing power. With
intelligent yet efficient algorithms and a few key sen-
sors, these hurdles could be overcome. The failure

that finally disabled RASCAL was a simple hardware
connection malfunction. More time needed to be
spent by the team to harden the vehicle. RASCAL’s
concept was validated by its showing in the Grand
Challenge; with more time, the realization of its po-
tential would also have been reached.
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