
6
CHAPTER

Basic Stamp 2 Robot
Programming

Now that you have had a chance to play around with the TAB Electronics Build

Your Own Robot Kit and have had a chance to understand better the operation of
the different behaviors, you can now start developing your own application code to
learn more about robot programming. By simply adding a Parallax Basic Stamp 2
(BS2) to the robot, you are no longer limited to the simple operations and behaviors
built into the robot and the remote control.

If you have never programmed a computer before, I’m sure that the idea of pro-
gramming the robot is both exciting and scary. In the previous chapters, I have in-
troduced you to the basic concepts of programming and have given you an
introduction to programming behaviors and artificial intelligence. I’m sure you’ll
think that it looks easy when I do it, but it will probably become very difficult to do
yourself when you are just starting out.

I think that you will find that when you try to get your first program working, it
will take a long time and will probably cause you to ask a number of questions. It may
take you as long as two weeks just to get a simple program that says “Hello World!”
on your PC’s screen.

When this happens, please do not feel like you’re never going to “get it” and give
up. After you get your first application running, you will find that it will take proba-
bly half the time to get the second working, then maybe a few hours for the third,
and as you start doing more, the time required will be reduced.

Remember to start off small and work your way up. In the experiments/applica-
tions listed in this chapter, I will demonstrate some very small applications that you
can copy.

Before attempting to write your own application, there are four things that I
recommend you do. The first is to skim through the Parallax BASIC Stamp Pro-

gramming Manual Version 2 that is located on the CD-ROM. This manual is the

6-1

complete reference for all the different Parallax BASIC Stamps and it should be your
primary reference when you are programming and trying to work through problems.
This is not to say that I do not introduce you to some of the fundamentals and fea-
tures of BS2 PBASIC programming, it’s just that the manual should be your primary
reference.

Once you have gone through the BS2 programming manual, I recommend that
you sign up for the Parallax StampList (instructions for doing this are on the CD-
ROM’s html pages). The StampList is a very active ListServ group in which user’s
questions, successes, and ideas are presented and discussed. The StampList is pro-
vided and monitored by Parallax, and it is an excellent resource for fielding your
questions about programming the BS2 in the robot.

You can get more information about the StampList, as well as how to sign up at
Parallax’s web site at the following:

http://www.parallaxinc.com

Another resource that you should use (and definitely look at before starting to
program your own applications) is:

http://www.stampsinclass.com

as well as the TAB Electronics Build Your Own Robot Kit web page. On this site,
there are a variety of resources you can access, such as FAQs answering your basic
questions, sample applications, a forum for new questions as well as a list of resources
that will help you to design your own applications.

For the rest of this chapter, I will describe how you can develop your own cus-
tom robot applications using the TAB Electronics Build Your Own Robot Kit.

The Parallax Basic Stamp 2 and AppMod
One of the most innovative hobbyist, educational, and professional products of the

1990s was the Parallax BASIC Stamp. The first version of the BASIC Stamp made elec-
tronics and computer programming accessible to many different people. In the 10 years
since the introduction of the first BASIC Stamp, Parallax has added more powerful ver-
sions of the BASIC Stamp to their catalog as well as many different supporting products
to make it easier to convert your ideas into reality. Ease of use has always been a hall-
mark of the BASIC Stamp product family, and this makes them ideal for use as the “cen-
tral nervous system” of the TAB Electronics Build Your Own Robot Kit.

All Parallax Basic Stamps have been designed using the same model of the block
diagram shown in Figure 6-1. A microcontroller’s program memory is loaded with an
interpreter that executes a series of instructions that are downloaded from a PC.
When these instructions are downloaded, they are stored in a serial EEPROM
(“SEEPROM” in Figure 6-1) and retrieved as the application is executed. The mi-
crocontroller’s I/O pins are used as the I/O pins of the BASIC Stamp.

There are two important features that you should be aware of in all Basic
Stamps. The first is that there is a custom PC programming interface built into the
microcontroller. In the first Basic Stamp (known as the “BASIC Stamp 1” or “BS1”),
the programming interface is a synchronous serial interface similar to the one im-
plemented for the TAB Electronics Build Your Own Robot Kit control interface
that connects the robot to a BASIC Stamp 2 (“BS2”). The “BS2”, which the TAB

6-2 Chapter Six

Electronics Build Your Own Robot Kit is designed to work with, is programmed se-
rially via a PC’s RS-232 interface.

The program (or “application”) code is developed on a PC using a Windows-com-
patible editor/development system known as “stampw.” BASIC applications are created
using this tool and then compiled into the series of instructions that are executed by the
BASIC Stamp. I usually refer to these instructions as “tokens” as they represent BASIC
functions and statements, but they are not the actual instructions executed by the mi-
crocontrollers built into the BASIC Stamp. In the following sections, I will demonstrate
how applications are developed using “stampw” on a PC and how they are loaded into
the BASIC Stamp 2 plugged into the TAB Electronics Build Your Own Robot Kit.

The second feature that you should be aware of is that all BASIC Stamps have a
built-in voltage regulator to convert larger voltages into the correct voltages re-
quired by the microcontrollers built into the BASIC Stamp. These regulators are gen-
erally low-current with low parasitic power requirements that make them ideal for
powering the BASIC Stamp plugged into the robot (in fact, the unregulated 9-volt
power from the battery is used to drive the BASIC Stamp to avoid loading down the
robot’s 78L05 voltage regulator). In addition to being able to drive the circuitry on
the BASIC Stamp, these regulators generally have enough left over current for a few
LEDs or simple logic chips.

These regulators do not, however, have enough current to drive large loads. In
recognition of this, and to protect the BASIC Stamp’s built-in voltage regulator, the TAB

Electronics Build Your Own Robot Kit does not pass the BASIC Stamp’s regulated
power to any other parts. As I will discuss below, for some applications, you will have to
provide your own regulator circuit when you are adding circuitry to robot applications.

As I stated above, the first BASIC Stamps (“BS1s”) were programmed by a PC’s
parallel port. This method for the most part works well, but it cannot insure that the
connection will work with all PCs and parallel ports. The BASIC Stamp 2 (“BS2”) was
designed to be programmed by a PC’s RS-232 serial port, which is a much more ro-
bust interface with very well-defined voltage levels and data rates.

Basic Stamp 2 Robot Programming 6-3

+5-Volt
Power

8/16 I/O
Pins

Unregulated
Power In

Programming
Interface

Voltage
Regulator

Microchip
PICMicro(R)

or Scenix SX
Microcontroller

SEEPROM

Figure 6-1 Block diagram of Parallax “Basic Stamp.”

Another deficiency of the BS1 over the BS2 is its limitation of eight input and
output (“I/O”) pins. The BS2 has 16 I/O pins, along with the programming port,
which can be used as an RS-232 interface. 14 of the pins are available for your use in
developing TAB Electronics Build Your Own Robot Kit applications. The I/O pins
are TTL/CMOS level bidirectional pins, and through the built-in PBASIC functions,
can be used for a lot more than just simple digital input and output.

The BS2 has significantly more storage than the BS1. For program space, de-
pending on the model of BS2 that you work with, the difference can be eight to 64
times that of the BS1. Each BS2 has twice the RAM (variable) space of the BS1. This
increase will allow for larger and more complex applications. While I have never run
into space problems when developing applications for the BS1, the extra storage
available in the BS2 virtually guarantees that there will not be any problems with
running out of EEPROM space when you are programming applications for the Tab

Electronics Build Your Own Robot Kit.

The BS2 is significantly faster in executing its instructions than the BS1. Paral-
lax states that the BS1 is capable of running at 2,000 instructions per second and
that the BS2 runs at 4,000 to 12,000 instructions per second, depending on the
model. Personally, I dislike blanket statements about execution speed simply be-
cause different functions and statements execute at different rates; the time re-
quired to execute is more dependent on how the applications are programmed, than
how fast the BASIC Stamp’s microcontroller executes.

An important concept that I do not discuss enough in these chapters is that I
consider function and statement execution speed to be an incorrect measurement
when benchmarking an application. You will find that even the 2,000 instructions per
second speed of the BS1 will be more than adequate for the robot applications that I
present because the robot executes at human speeds, not what I call machine or
digital electronics speeds.

I consider the important measurements for a robot application to be:

1. Readability. When somebody else looks at the code, how hard is it for them
to understand how it works?

2. Protection. Are all the different possible situations and scenarios accounted
for? For the TAB Electronics Build Your Own Robot there are a limited
number of inputs to be considered, but not considering them or reacting
inappropriately will result in an application that gets stuck in corners or
responds inappropriately.

3. Responsiveness. I know I stated that I considered processor speed to be a
misleading indicator of application performance, but that does not mean that I
like waiting for something to happen. The application must respond to input in
a timely manner and not take an unreasonably long time to decide how to act.

The last advantage of the BS2 over the BS1, and probably the most important
reason for choosing the BS2 for the TAB Electronics Build Your Own Robot Kit, is
the enhanced features and built-in functions of its “PBASIC” language. When you
have read through the Parallax BASIC Stamp Programming Manual (a PDF copy
is included on this CD-ROM), then you will discover that there are a number of built-
in functions and standard programming statement capability improvements built
into the BS2 version of PBASIC over the BS1 version.

6-4 Chapter Six

As far as the TAB Electronics Build Your Robot Kit is concerned, the
“SHIFTIN” and “SHIFTOUT” instructions allow very simple bits of code to be used
for the BS2 to communicate with and control the robot. Other built-in functions al-
low the BS2 to communicate with other devices in a variety of different ways and use
different standard protocols. Along with this, the BS2 PBASIC language allows for
much more complex assignment and “if” statements, giving you more flexibility with
your applications.

I think the best way to describe the BS2 is to look at its “pinout” (how the pins
are arranged) as well as the function of each of the different pins. The BS2 plugs into
a standard 0.600” (600 mil) Dual In-line Package (“DIP”) socket with the features
and pins shown in Figure 6-2.

When you are working with any kind of electronic chip, it is important to know
where “Pin 1” is. This pin indicates how the chip is to be installed in the circuit. In
some chips, Pin 1 is indicated with a dot beside it. In the BS2, the semicircular mark
at the “top” of the chip indicates the end that Pin 1 is at. When the BS2 is installed
in the robot, this semicircular mark should be used to line up with the similar mark
that has been placed on the white marking (known as “silkscreen”) on the TAB Elec-

tronics Build Your Own Robot Kit printed circuit board.
The other pins on the board are numbered by incrementing counterclockwise

(looking from the top) from Pin 1. Using this convention, Pin 2 (“SIN”) is the pin be-
side Pin 1, Pin 3 (“ATN”) is beside Pin 2, and so on to Pin 24 (“VIN”), which is di-
rectly across from Pin 1. This numbering convention is used for all DIP chips (and
many others of different technologies).

Unregulated power is applied to the BS2 through the “VIN” and “VSS” (often re-
ferred to as “Ground” or “Gnd”) pins. The regulator built into the BS2 converts the
voltage applied at VIN to �5 volts and applies it to the parts on the BS2 as well as ex-
ternal parts via the “VDD” (sometimes referred to as the “Vcc”) pin. The BS2 can
have �5 volts applied directly through the VDD pin if regulated power is already
available in the application. As I said earlier, the BS2 is powered by the unregulated
power supplied by the 9-volt battery and the BS2 regulated voltage is not available
anywhere else in the robot.

Basic Stamp 2 Robot Programming 6-5

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
_RES or RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Pin 1
Indicator

Pin 1

Figure 6-2 Parallax BASIC Stamp 2 pinout.

The “SOUT,” “SIN,” and “ATN” pins are used for programming the BS2 and can
be used for an RS-232 interface. The “ATN” pin is connected to the programming
PC’s “DTR” pin and is used to reset the BS2 for programming. If ATN is not active
when the BS2 powers up, then the application already stored in the BS2 starts exe-
cuting automatically. This feature is very useful since it allows you to program the ro-
bot and then try it out somewhere else.

The remaining 16 pins of the BS2 are the I/O pins. These are bidirectional CMOS
input and output pins, each with the ability of sinking and sourcing approximately 20
mA. Total current sunk or sourced by the BS2 should not exceed 75 mA to ensure
that the BS2’s voltage regulator is not overloaded.

There are a number of different ways of accessing the BS2’s I/O pins. They can
be accessed directly, as if they were variables, by using one of the predefined values
listed below:

Function Word 8 bits 4 bits Single bits

Input bits INS INL, INH INA-IND IN0-IN15
Output bits OUTS OUTL, OUTH OUTA-OUTD OUT0-OUT15
Data direction bits DIRS DIRL, DIRH DIRA-DIRD DIR0-DIR15

The Data Direction Bits are used to enable the CMOS drivers in the BS2. If a “1”
is written to the bit, then the corresponding pin is in “output” mode, while a “0” in
the bit will put the pin in “input” mode (which means that it cannot be driven).

Another important concept to understand about the I/O pins is the difference
between the “IN” and “OUT” values for the bit. “IN” is the actual value at the I/O pin.
This value can be the same as the “OUT” value, but if the pin is in input mode or the
pin is being “overdriven,” then it will be different. As I’ve shown in Figure 6-3, the
“OUT” value is stored in a flip flop and can be driven out to the I/O pin when the “Pin
Output Enable” is set to a 1.

For example, to set pin “P0” to output as a low value, you could use the code

OUT0 = 0 ‘ Load the Pin Output F/F with “0”
DIR0 = 1 ‘ Put the Pin in Output Mode

In addition to writing directly to the pins, you can also use a number of built-
in functions. For example, the two lines above could be replaced with the single
function

LOW 0 ‘ Output “0” from Pin 0

While this pin architecture seems to be somewhat confusing, it actually is the
best way of implementing the pins. Other microcontrollers implement the same
functions in different ways and can have some problems for users trying to correctly
output specific values. To simplify how you work with the BS2 I/O pins in your appli-
cations, I recommend that you write to the “OUT” labels and read the value at the I/O
pin using “IN,” and set the mode using “DIR.”

I felt it was important to explain how the I/O pins work for simple I/O so that you
would have some ideas of what is happening when you start working through the ap-
plications below. Again, I recommend that you read through the BASIC Stamp Pro-

gramming Manual PDF on the CD-ROM, so that you have an idea of where to look
for information in the manual.

6-6 Chapter Six

As I write this, there are four different models of the BS2 to choose from. All of
them have the same pinouts and can execute the same basic application code, but
they all have differences as I have summarized in the following table:

Model Price Speed EEPROM RAM Current required

BS2 $49 4k in/sec 2 kBytes 26 Bytes 7 mA/50 µA Sleep
BS2e $54 4k in/sec 16 kBytes 26 Bytes 20 mA/200 µA Sleep

63 Bytes
Scratchpad

BS2sx $59 10k in/sec 16 kBytes 26 Bytes 60 mA/200 µA Sleep
63 Bytes
Scratchpad

BS2p24 $79 12k in/sec 16 kBytes 26 Bytes 40 mA/50 µA Sleep

The BS2e is an enhanced version of the BASIC Stamp 2 with a more powerful mi-
crocontroller and more storage. The BS2e’s processor is slowed down to reduce the cur-
rent required by the device. The BS2sx is identical to the BS2e, but runs the
microcontroller at the maximum speed possible (resulting in higher current require-
ments). The BS2p24 has an enhanced PBASIC function set compared to the other de-
vices and has a sibling device, the BS2p40, which is a 40-pin version of the BS2 with 16
additional I/O pins.

For the TAB Electronics Build Your Robot Kit, I recommend that you use the
original BS2 for two reasons. The first is that it uses the least amount of power. The
second is that when you include the $15 coupon from Parallax, by ordering the BS2
from Parallax (include the ISBN number of the Tab Electronics Build Your Own

Robot Kit Box as specified on the coupon that came with the kit), it is by far the
cheapest way to add the BS2 capability to your robot. As I’ve indicated above, the
slower speed is not an issue, and as you start working through the example experi-
ments below, you will discover that for most applications you will require just a frac-
tion of the 2 kBytes available to the BS2.

To install the BS2 into the TAB Electronics Build Your Own Robot Kit, the BS2
is gently pressed into the socket provided in the robot (until it “clicks” in) as shown
in Figure 6-4. Note that Pin 1 of the BS2 points toward the rear of the robot and not
the front. To remove the BS2, you can use a small, flat-bladed screwdriver to pry it
out of the socket or use a plastic “chip puller” to perform the same function. Using

Basic Stamp 2 Robot Programming 6-7

Pin
Flip Flop
“OUT”

Pin Output
Enable
“DIR”

Current Pin
Value
“IN”

Figure 6-3 Block diagram of Basic Stamp I/O pins.

either tool, be careful not to damage the BS2 or the surrounding components (most
importantly, the IR LED that is just in front of the socket).

I recommend that the BS2 is never removed from the TAB Electronics Build

Your Own Robot Kit. The reason for this recommendation is the possibility of dam-
aging either the BS2 or the robot during the operation. If you leave the BS2 in, there
are some simple Null programs that you can load into the BS2 to render it inert as far
as the robot is concerned. I will present these instructions to you later in this chapter.

To make BS2 experimentation easier and more efficient, Parallax has specified
what amounts to a simple bus for the BS2 that can be used to connect different in-
terface products to it. This bus is known as AppMod, and to allow you to take advan-
tage of these products, the TAB Electronics Build Your Own Robot has an AppMod
socket beside the BS2, along with a hole for a standoff in the middle of the robot.

As I write this (August 2001), Parallax has five different AppMod products
(known as “Modules”) available:

Module Price Function

Sound $89 Will digitally record and playback up to 60 seconds of sound.
LED Terminal $89 Four LED Alpha Numeric Digits.
Compass $79 The compass is designed for use with robots to give them a sense

of direction.
Breadboard $24 Breadboard module for prototyping application circuits.
Protoboard $19 Solderable application prototype board.

The three AppMods with functions already built in (sound, LED terminal, and
compass) communicate with the BS2 using the built-in serial functions. In this chap-
ter, I will be concerned primarily with the Bread Board AppMod (the layout is shown
in Figure 6-5), and I will be presenting you with an experiment that you can build on
it to enhance your TAB Electronics Build Your Own Robot Kit.

There are three things that you should be aware of when you want to use an
AppMod with the robot. The first is that you will have to use the socket “Extender”

6-8 Chapter Six

A
pp

M
od

P
ro

gr
am

m
in

g
C

on
ne

ct
or

9-
V

ol
t

B
at

te
ry

B
S

2
S

oc
ke

t

Chip Pin 1
Indicator
“Notch”

BS2
Pin 1

Note “top”
of BS2 is
pointing
toward
rear of
robot

Figure 6-4 Installing the BS2 into the robot.

that comes with the AppMod board to use it with the TAB Electronics Build Your

Own Robot Kit. Some parts of the robot (like the motors, their wiring, large capaci-
tors, and the IR LEDs) will interfere with it being plugged down directly onto the ro-
bot. As an added bonus, using the extender will save a lot of wear and tear on the
robot’s socket when you plug in and pull out the AppMod.

Secondly, I highly recommend using the stand off that is included in the AppMod
kits. You will find that the vibration caused by running the robot across the floor can
result in the AppMod loosening and rising up out of the socket if it is not “battened
down.” To use the included standoff with the TAB Electronics Build Your Own Ro-

bot Kit, I found that I had to insert three standard metal #6 washers between the
standoff and the AppMod to prevent the AppMod’s and the robot’s connectors from
being damaged. Figure 6-6 shows how the AppMod is to be installed on the robot.

The third issue to be concerned with when using the AppMod with the TAB Elec-

tronics Build Your Own Robot Kit is how power is supplied to the circuitry on the
AppMod. In its “standard” configuration, �5 volts (“VDD”) is passed to the AppMod
circuit, but in the TAB Electronics Build Your Own Robot Kit, the �5 volts that is
provided for the microcontroller and sensors on the card is not passed to the AppMod
socket. The three AppMod applications with functions on them have built-in �5-volt
regulators to provide the power for the circuitry. The breadboard and prototype App-
Mods do not have a regulator built in, which means you have to add your own.

This is not terribly hard to do using the circuit shown in Figure 6-7, which re-
quires just a 78L05 (in a TO-92 package), a 10 µF (electrolytic) capacitor, and a 0.1
µF capacitor (any type). To wire it into the AppMod so that it can be used with the
TAB Electronics Build Your Own Robot Kit, use the circuit shown in Figure 6-8—
it should just take you a few seconds.

Programming PC Setup
Your PC should be running Microsoft Windows/95, Windows/98, Windows/ME,

Windows/NT, or Windows/2000. If you are running MS-DOS, there is a version of the

Basic Stamp 2 Robot Programming 6-9

Vdd
Vdd
Vin
Vss
Vss
P15
P14
P13
P12
P11
P10
P9
P8

Vdd
Vdd
Vin
Vss
Vss
P0
P1
P2
P3
P4
P5
P6
P7

V
ss P
0

P
2

P
4

P
6

P
8

P
10

P
12

P
14

V
dd

V
ss

P
1

P
3

P
5

P
7

P
9

P
11

P
13

P
15

V
in AppModBread

Board

Parallax Inc
Figure 6-5 Parallax bread-
board “AppMod.”

BASIC Stamp 2 programming software (known as “Stamp2.exe”), which you can
download from the Parallax website and use with the applications I have presented
here. In this chapter, I focus on using the Windows version of the software. If you are
using other operating systems, contact Parallax for development system availability
for your operating system.

The first thing that you should do to get your PC ready for programming the BS2
in the TAB Electronics Build Your Own Robot Kit is to shutdown your PC and con-
nect a 6- to 10-foot “straight-through” 9-pin “D-Shell” cable to your PC. These cables
are often labeled “serial extenders” or “serial extensions.” The cables must NOT be
labeled as being “NULL MODEM” or for use with modems in any way (normally

6-10 Chapter Six

A
pp

M
od

P
ro

gr
am

m
in

g
C

on
ne

ct
or

9-
V

ol
t

B
at

te
ry

B
S

2
S

oc
ke

t

AppMod socket
inserted into

corresponding
socket on robot

Standoff installed
in robot and

used to “lock down”
AppMod

Socket
Side
View

Standoff
Side
View

A
pp

M
od

S
oc

ke
t

A
pp

M
od

E
xt

en
de

r

AppMod

Robot

Nut

Standoff

Washers

S
cr

ew

A
pp

M
od

}

R
ob

ot

V
d

d
V

d
d

V
in

V
ss

V
ss

P
15

P
14

P
13

P
12

P
11

P
10

P
9

P
8

V
d

d
V

d
d

V
in

V
ss

V
ss P

0
P

1
P

2
P

3
P

4
P

5
P

6
P

7

Vss
P0
P2
P4
P6
P8

P10
P12
P14
Vdd

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

A
p
p
M

o
d

B
re

a
d

B
o
a
rd P
a
ra

lla
x

In
c

Figure 6-6 Installing an AppMod module onto the robot.

+ +

78L05

10 µF 0.1 µF

Unregulated
Voltage In

(“VIN”)

Regulated
Voltage Out

(“VDD”)

Ground
(“VSS”)

Figure 6-7 Circuit to provide �5 volts to AppMod.

modems have a 25-pin connector). Each cable should have a “male” and a “female”
connector on each end (you should be able to plug the ends into one another to form
a loop with the cable). The cable should not cost you more than $5.

Some PCs have a 25-pin RS-232 serial connector; in these situations, you will
have to buy a DB-25 to 9-pin conversion connector. These are available for just a few
dollars from most computer retailers.

When you have the cable connected to the PC, you are ready to boot the PC and
follow the instructions on the CD-ROM that show you how to copy the files from the
CD-ROM onto your PC’s hard drive. I have not included the information regarding
loading the hard file here as it may change with different versions of the Parallax BA-
SIC Stamp software. The CD-ROM will also point you to the TAB Electronics Build

Basic Stamp 2 Robot Programming 6-11

Vdd
Vdd
Vin
Vss
Vss
P15
P14
P13
P12
P11
P10
P9
P8

Vdd
Vdd
Vin
Vss
Vss
P0
P1
P2
P3
P4
P5
P6
P7

V
ss P
0

P
2

P
4

P
6

P
8

P
10

P
12

P
14

V
dd

V
ss

P
1

P
3

P
5

P
7

P
9

P
11

P
13

P
15

V
in AppModBread

Board

Parallax Inc

0.1 uF

10 uF
+

+5 volts available
hereL05

Flat side of 78L05
facing breadboard
center

Figure 6-8 Parallax breadboard AppMod with �5-volt power
supply.

AppMod

Programming

Connector

9 Volt

Battery

BS2

Socket

Development
System
(PC)

Serial Cable

Robot

NonConductive
Robot Support

Figure 6-9 Recommended programming workstation.

Your Own Robot Kit’s web page so that you can ask questions if you have problems
loading the PC’s hard drive.

Finally, when you have the serial cable connected to the PC and the software
loaded, you can set aside a spot to program the robot while you are working on it. I rec-
ommend making a space beside your PC so you can test out the application and use
the “debug” function to feed back to you what is happening with the application. Along
with this, I recommended that you find something that is nonconductive for the robot
to sit on that keeps the wheels from contacting anything when you are testing out the
software (I use an old plastic wire reel). This stand will prevent the robot from running
away from you when you first power it up or when the application is executing.

The “workstation” layout that I am proposing can be seen in Figure 6-9.

Experiments, Parts, Equipment, and Tools
With a BS2 plugged into the robot and the PC ready to start programming, you

are ready to jump to the next level with the TAB Electronics Build Your Own Ro-

bot Kit and start to program the robot yourself. The experiments presented here will
take you only a few moments to set up and will help explain different concepts of ro-
bot programming.

Along with the PC loaded with the programming tools, source code for the ex-
periments presented above, and a serial cable, you will also require the following
parts to work through the experiments:

TAB Electronics Build Your Own Robot Kit

Parallax BASIC Stamp 2

Parallax “Breadboard” AppMod card

Breadboard wire kit

78L05 �5-volt regulator

10-µF electrolytic capacitor

0.1-µF capacitor (any type)

10-LED “bargraph” display

10-pin, 470-ohm “SIP” resistor

470-ohm resistor

Just a few words on the different parts: most of them are available from a vari-
ety of different sources, including

Parallax

Radio Shack

Digi-Key

Jameco

6-12 Chapter Six

Contact information for these sources (along with others) can be found on the
CD-ROM HTML files.

The multiple-pin parts (the 78L05, 10-LED “bargraph display,” and “10-pin, 470-
ohm SIP” resistor) are all polarized parts. This means that you will have to be care-
ful with the orientation of the parts as you wire them into the circuits. In the wiring
drawings, I have made sure that the orientation of these parts is obvious. Don’t worry
if you seem to have miswired the component; I don’t think any of these will be dam-
aged if they are put in the wrong way.

Robot Control Application Programming Template
To make the job of developing applications easier, I have created the template

that I have listed below. This template is available on the CD-ROM as a text file that
can be loaded into the “stampw” application and allow you to add your own code to
create an application. When you copied the CD-ROM files onto your PC’s hard drive,
this file was placed in the

C:\tabrobotkit\template

subdirectory.

This file should be used as the basis for all the applications that you create for
the TAB Electronics Build Your Own Robot Kit.

I have included the text of the template below. Don’t worry if you do not under-
stand everything that’s in it. I will explain the important statements as I work
through the applications that follow.
‘ Programming Template - Put Application Description HERE
‘
‘ Template originally created by Myke Predko
‘ Copyright (C) 2001 McGraw-Hill
‘
‘ { $STAMP BS2 }

‘ Mainline
high SC ‘ Set the I/O Bits As O/P
high SD ‘ and High

‘ #### - Put Application Code Here
‘ Robot Interface Code Follows:
‘
‘ Myke Predko
‘
‘ Copyright (C) 2001 McGraw-Hill
‘
‘ Robot Commands
RobotStop con 0 ‘ Stop the Robot
Behavior1 con 1 ‘ Random Movement
Behavior2 con 2 ‘ Photovore
Behavior3 con 3 ‘ Photophobe
Behavior4 con 4 ‘ Wall Hugger/Maze Solver
RobotForward con 5 ‘ Move Forward for 200 msecs
RobotReverse con 6 ‘ Move Reverse for 200 msecs
RobotLeft con 7 ‘ Turn Left for 200 msecs

Basic Stamp 2 Robot Programming 6-13

RobotRight con 8 ‘ Turn Right for 200 msecs
RobotLEDOn con 9 ‘ Turn on the Robot’s LED
RobotLEDOff con 10 ‘ Turn off the Robot’s LED
RobotPWM0 con 11 ‘ PWM = 0% Duty Cycle
RobotPWM1 con 12 ‘ PWM = 1st “Notch”
RobotPWM2 con 13 ‘ PWM = 2nd “Notch”
RobotPWM3 con 14 ‘ PWM = 3rd “Notch”
RobotPWM4 con 15 ‘ PWM = 100% Duty Cycle
RobotPWM con 16 ‘ Return the Current PWM Value
RobotState con 17 ‘ Return the Executing State
RobotWhiskers con 18 ‘ Return State of the “Whiskers”

‘ Bit 0 - Left “Whisker”
‘ Bit 1 - Right “Whisker”

RobotCDSL con 19 ‘ Return Value of Left CDS Cell
RobotCDSR con 20 ‘ Return Value of Right CDS Cell
RobotButton con 21 ‘ Return Last Remote Button

‘ Pressed
‘ 0 - No Buttons Pressed
‘ 1 - Leftmost Button Pressed
‘ 2 - Middle Button Pressed
‘ 3 - Rightmost Button Pressed
‘ After “RobotButton” Operation,
‘ Button Save in Robot is Cleared

‘ Robot Interface Pins
SC con 14 ‘ Define the I/O Pins
SD con 15
‘ Robot Interface Variables
RobotData var byte ‘ Data Byte to Send to/Receive

‘ from Robot

‘ Robot Operation Subroutines
RobotSend ‘ Send the Byte in “RobotData”

low SC ‘ Hold Low for 1 msec before
pause 1 ‘ Shifting in Data
shiftout SD, SC, LSBFIRST, [RobotData]
high SC
return

RobotSendReceive ‘ Send the Byte in “RobotData”
low SC ‘ Hold Low for 1 msec before
pause 1 ‘ Shifting in Data
shiftout SD, SC, LSBFIRST, [RobotData]
pause 1 ‘ Wait for Operation to Complete
shiftin SD, SC, LSBPOST, [RobotData]
high SC
return

Experiment 1—“Hello World!”
Before starting to create BS2 applications for the TAB Electronics Build Your

Own Robot Kit, I want to first show you how the BS2 is programmed and how you
can use the PBASIC “debug” function to feed back information to you. This applica-

6-14 Chapter Six

tion is a very traditional one for first-time programmers or people working with a
new programming language or development system. Its purpose is to demonstrate
that the programmer can implement a simple application.

While you can find this application in the
C:\tabrobotkit\code

subdirectory, I would like to walk you through the process of creating the application
on your own. I will not repeat these detailed instructions for creating an application
in the later experiments, but this should act as a guide for you in creating your own
applications.

First, the robot should have the BS2 installed (with Pin 1 pointing toward the
rear as I have discussed above), be connected to the PC, and placed on a noncon-
ducting stand (with the wheels free to turn) as I’ve shown in Figure 6-9.

With this done, turn on the robot. The LED on the robot will go on for a half sec-
ond and the wheels will start to turn. Press the “Stop” button on the remote control,
and leave the robot turned on. The robot is now waiting for a command from either
the remote control or the BS2. As I have indicated elsewhere, the robot’s battery
will power both the robot and the BS2 for a long period of time—you do not have to
feel as though you are going to have to “rush” through the process of programming
the robot.

With the robot connected to the PC, you can now start up “stampw.” This appli-
cation can be invoked from either
C:\tabrobotkit\Hello World

or from the desktop (after copying the icon to the desktop as I showed in the soft-
ware installation instructions).

“Stampw” will come up with the blank dialog box shown in Figure 6-10. Next,
“open” the “template.bs2” file in
C:\tabrobotkit\Template

by either clicking on “File” and then “Open” or by simply pressing the “Ctrl” and “O”
keys together. In either case, the “Open” dialog box shown in Figure 6-11 will come
up. Click on “template” to highlight it and then click on the “Open” button. This will
load the “template.bs2” file into the stampw editor.

Before you change the file, you should rename it. This is done by clicking on
“File” and then “Save As” (as shown in Figure 6-12). When you have done this, you
will get the dialog box shown in Figure 6-13. For this example, I changed the subdi-
rectory so that the changed file was saved in to
C:\tabrobotkit\Hello World

and I saved the file as “My Hello World.” Now, the “stampw” dialog box that you are
working with should look like Figure 6-14. Where I have put in a comment (this is the
single quote, ‘—everything to the right of this is ignored) and four “pound signs”
(####), replace this with the text

debug “Hello World!”, cr ‘ Output Debug Message
end ‘ Nothing more to do

This can be done by deleting the four pound sign line and simply putting in the two
new lines of text. The “stampw” dialog box should look like Figure 6-15.

Basic Stamp 2 Robot Programming 6-15

6-16 Chapter Six

Figure 6-10 Parallax “Stampw” startup dialog box.

Figure 6-11 Loading the BS2 “template” file.

Basic Stamp 2 Robot Programming 6-17

Figure 6-12 Saving a new copy of the BS2 template.

Figure 6-13 Renaming the template file.

6-18 Chapter Six

Figure 6-14 Editing the template file.

Figure 6-15 Application code added to template.

The first line of the new text (‘debug “Hello World!”, cr...’) prints out the mes-
sage “Hello World!” and starts a new line. The “debug” function will print the quoted
text, numeric values, or control strings after it. Each new piece of data is separated
by a comma (,). The “cr” control string is a short form for “Carriage Return” and
starts a new line.

If you are going to print out the contents of a variable, you will probably want
to modify the variable with something like the “dec(variable)” function, which will
print out a numeric value for the contents of the variable instead of an ASCII rep-
resentation of this value. You can find out more about “debug” and other built-in
functions of PBASIC in the Parallax Programming Manual available on the CD-
ROM.

After the “debug” statement, I have put in an “end” statement. This instruction
stops the BS2 from further executing and puts the microcontroller built into the BS2
into “sleep” mode. “Sleep” is a very low power mode that essentially turns off the mi-
crocontroller while leaving its outputs unchanged. As a rule, you should always have
an “end” statement at the end of your BS2 application and before the robot interface
API subroutines at the bottom of the “template.bs2” file.

After you make changes to the application code, I recommend that you save it.
This is done by either clicking on “File” and then “Save” or by pressing “Ctrl” and
“S” together. If you are working on a complex application you may wish to save the
application under a different file name, using the “Save As...” process I outlined
above.

I have not included the source file for this application in this section because
the actual application code is only two lines long and I think that you should at-
tempt to enter it in yourself. I have included my version of this application in the

C:\tabrobotkit\Hello World

subdirectory in case you run into any problems or you aren’t sure how the code
should look after it has been entered into the “template.bs” file.

Once you make the changes you can run the application. This is done by either
clicking on “Run” and then “Run” or by pressing “Ctrl” and “R” together. If every-
thing goes well, a dialog box indicating that the code is being downloaded into the
BS2 will appear and the “Debug Terminal” dialog box (shown in Figure 6-16) will
pop up.

The “Debug Terminal” is used to display the information printed by the “debug”
statements in the running BS2 application. For your first few applications, I recom-
mend that you put in “debug” statements to help you understand where the BS2 ap-
plication is and how it is executing.

There is a good chance that you will get the “Hardware Not Found” program-
ming failure dialog box shown in Figure 6-17. This failure indicates that the PC was
unable to communicate with the BS2. The first time you attempt to program the ro-
bot, the “stampw” application searches each of the serial ports built into the PC to
see if there are any BS2s connected to the port.

The TAB Electronics Build Your Own Robot Kit has circuitry built into it that
should allow “stampw” to find the BS2 connected into the robot automatic. If it can’t
find the port, then the error dialog box shown in Figure 6-17 will be displayed.

Basic Stamp 2 Robot Programming 6-19

6-20 Chapter Six

Figure 6-16 Application running properly.

Figure 6-17 Failure programming robot.

There are a number of reasons Figure 6-17 will be displayed. If you are unable to
program the robot, the first thing you should do is to explicitly define the serial port
that is being used to program the robot. This is done by clicking on “Edit” and then
“Preferences” of the “stampw” application dialog box. This will bring up a new dialog
box as shown in Figure 6-18. Click on “Editor Operation” and make sure the serial
port that “stampw” has chosen is the one you think should be used for the robot pro-
gramming. If it isn’t, change the “Default COM Port:” to the one you think that should
be used.

If this does not fix the problem, then you should go through the following
checks:

1. Try other RS-232 ports in the PC. You may be trying to access the wrong
port.

2. Check for applications that are already executing on the serial port. For
example, if you have a Palm Pilot, its download software may be interfering
with the operation of the stampw during the programming operation.

3. Check the power on the robot. Wave your hand in front of the IR Collision
sensors, to see if the LED will light. Also check to see if the robot’s power
switch is on.

4. Check the orientation of the BS2. It is very easy to put it in incorrectly. The
pin 1 of the BS2 (and the semicircular indicator) should be pointing toward
the rear (toward the wheels) of the robot.

5. Check the serial cable. You must have a “straight-through” 9-pin cable—you
cannot use a “Null Modem” cable.

Basic Stamp 2 Robot Programming 6-21

Figure 6-18 Checking serial interface ports.

If you have checked over the robot and cannot find the problem (or if you don’t
understand all the points that I am making), then you should check the TAB Elec-

tronics Build Your Own Robot Kit’s web page at:

http://www.tabrobotkit.com

for additional things to check as well as ask for suggestions from people for help.

Experiment 2—Detecting Collisions
After building the robot, you should have “calibrated” the IR proximity detectors

by pressing the “Stop” button of the IR remote control and then waving your hands
in front of the robot. When the proximity detectors detected your hand, the LED
should have lit. Depending on where your hand was when the LED lit, you might
want to adjust the potentiometer to “tune” it to the best location. The second ex-
periment carries out much the same function but utilizes the BS2 for the logic in-
stead of just the microcontroller built into the TAB Electronics Build Your Own

Robot Kit.
In explaining how this application works, I will start by explaining how I would

like the code to work and then work through how I implemented the actual BS2
PBASIC code. The function of the PBASIC code is quite simple, and you will be able
to master it quite quickly especially in regard to interfacing to the TAB Electronics

Build Your Own Robot Kit.
The application function could be written out in PBASIC “pseudo-code” as

pause 100 ‘ Stop the Robot from Running
Robot(Stop) ‘ (1)

OuchlessLoop:
Flag = 0 ‘ (2)

Loop: ‘ Repeat Here Forever (3)
pause 500 ‘ Poll Once Every 1/2 Second

if (No Collision) then OuchlessLoop ‘ (4)
‘ Collision

Robot(LEDOn) ‘ Flash LED - Turn on
Pause 500 ‘ (5)
Robot(LEDOff) ‘ LED off

if (Flag = 1) then Loop ‘ Don’t Print “Ouch” Twice (6)
Flag = 1 ‘ Indicate “Ouch” Output (7)

debug “Ouch! Something Hit Me”, cr

goto Loop ‘ (8)

To help explain what is happening in the application code, I have numbered
eight sections of code. I will go through each of them below. I have also marked the
application source code listed below with the same indicators so that you can see

6-22 Chapter Six

how the code is “actually” implemented. In several of these sections, I have defined
some basic rules that you should follow when you develop your own BS2 code for the
TAB Electronics Build Your Own Robot Kit.

1. After power is applied to the robot, a delay of 100 msecs is made to make sure
that the robot’s on board microcontroller has had an opportunity to power up
and that the regulated power has stabilized. You should always wait a
minimum of 100 µsecs before acessing the microcontroller on the robot.

2. A “Flag” is a variable that is used to save a previous state or indicate what
else has been happening. In this case, the bit variable “Flag” is used to
indicate whether the “ouch” message was printed during the previous time
through the loop. This statement is the first one after the “OuchlessLoop”
label. If neither collision sensor was active after being polled, then the Flag
is reset so that the program can test to see whether or not either of the
collision sensors was active during the previous poll. If they weren’t, then
the “Ouch” message can be printed. The variable “Flag” is declared at
indicator (0) of the application source code listed below.

3. The “Loop” label is used to indicate the start of an “inner” loop to
“OuchlessLoop” where execution returns if the collision sensors indicate
that something is in the robot’s way. After this label, a delay of 500 msec
(“pause 500”) was inserted so that the microcontroller in the robot could
execute without being continually “commanded” by the BS2. In all your
applications, you should wait a minimum of 20 msec before sending a new
command or poll a state of the robot.

4. The IR proximity detectors (“collision sensors”) are polled, and if there is no
collision execution jumps to “OuchlessLoop” and “Flag” is cleared. If there is
a collision, then execution continues to the following statements.

5. The IR proximity detectors have indicated that there is something within
collision range of the robot. The BS2 code turns on and off the LED with
half-second (500-msec) delays.

6. The “Flag” variable is tested to see if it is currently set. If it is, execution
returns to loop where the LED will be polled again after a 500-msec delay. If
“Flag” is not set, execution continues to the following statements.

7. The “Flag” variable is set to indicate that the code that prints the “Ouch”
message has executed for this collision. After the flag is set, the “Ouch”
message is sent to the controlling PC via the PBASIC “debug” function.

8. After the “Ouch” message is printed, execution jumps back to the “Loop”
variable. Notice in this program that there is no way for the execution of the
application to continue past this statement except to invoke the subroutines
that command or poll the robot. This “goto Loop” statement is what makes
this application an “endless loop”—it will never stop executing but instead
will continually loop around, polling the IR proximity detectors.

To command and poll the TAB Electronics Build Your Own Robot Kit from the
BS2, I have created two simple subroutines that will perform the communications for
you. To make things even simpler for you, I have included them along with a series
of constant defines that can be a reference for you and help you understand how the
interface works.

To send a command to the robot, the code

Basic Stamp 2 Robot Programming 6-23

RobotData = RobotCommand ‘ Specify the Command
gosub RobotSend ‘ Send Command to the Robot

is used where “RobotCommand” is defined below as the commands from “Robot-
Stop” to “RobotPWM4.” These commands do not return any value to the BS2 appli-
cation and the robot will start executing them immediately. The only case where
there could be a problem is if you initiate behaviors 2 or 3, and there is an object in
front of the robot that stops the behavior before it begins.

Along with the ability to send commands directly to the TAB Electronics Build

Your Own Robot Kit, you can also request information of (“poll”) the robot using the
robot commands from “RobotPWM” to “RobotButton.” These commands all return a
value using code that is almost identical to the simple command send above:

RobotData = RobotCommand ‘ Specify the Command
gosub RobotSendReceive ‘ Send Command to the Robot

After the “RobotSendReceive” subroutine returns execution to the mainline,
“RobotData” will have been changed to the return value for the function.

When the code
RobotData = RobotWhiskers ‘ Read the Robot Whiskers
gosub RobotSendReceive

is executed, “RobotData” is initially made equal to “RobotWhiskers” or decimal 18.
After “RobotSendReceive” has executed and returned, “RobotData” will be the value
returned by the robot. If you look at the description for the function below, you will
see that I have just defined the bits that are updated by the TAB Electronics Build

Your Own Robot Kit.
To understand how these bit values work, remember that the least significant bit

has a value of “1” while the next bit has a value of “2.” So for Bit 0 to be the Left
Whisker, a “1” is returned if there is a “collision” at that proximity detector and a “2”
is returned if there is a “collision” at the right proximity sensor. The return values
can be expressed in the table below:

Left Right Bit 0 Bit 1 Value Returned

Free Free 0 0 0—No Collisions
Collide Free 1 0 1—Left Collision
Free Collide 0 1 2—Right Collision
Collide Collide 1 1 3—Collision on Both Sensors

Defining the return values of a function by using the bits of a returned value is of-
ten used in hardware programming descriptions. You should not be fazed when you
encounter this; instead go back to “Introduction to Programming” to understand what
the decimal value is for each bit and what the actual returned byte value will be.

The full application code is listed below and can be found in the subdirectory:
C:\tabrobotkit\Detecting Collisions
‘ Detecting Collisions - Print Debug
‘ Message Indicating that Something has
‘ Collided with the Robot
‘
‘ Myke Predko
‘

6-24 Chapter Six

‘ Copyright (C) 2001 McGraw-Hill
‘
‘ { $STAMP BS2 }

‘ Variables
Flag var bit ‘ One “Ouch” Per Collision (0)

‘ Mainline
high SC ‘ Set the I/O Bits As O/P
high SD ‘ and High

pause 100 ‘ Stop the Robot from Running
RobotData = RobotStop ‘ (1)
gosub RobotSend

OuchlessLoop: ‘ (2)
Flag = 0

Loop: ‘ Repeat Here Forever (3)
pause 500 ‘ Poll Once Every 1/2 Second
RobotData = RobotWhiskers ‘ Read the Robot Whiskers
gosub RobotSendReceive

if (RobotData = 0) then OuchlessLoop ‘ (4)
‘ Collision

RobotData = RobotLEDOn ‘ Flash LED (5)
gosub RobotSend
Pause 500
RobotData = RobotLEDOff
gosub RobotSend

if (Flag = 1) then Loop ‘ Don’t Print “Ouch” Twice (6)

Flag = 1 ‘ Indicate “Ouch” Output (7)
debug “Ouch! Something Hit Me”, cr

goto Loop ‘ (8)
‘ Robot Interface Code Follows:
‘
‘ Myke Predko
‘
‘ Copyright (C) 2001 McGraw-Hill
‘
‘ Robot Commands
RobotStop con 0 ‘ Stop the Robot
Behavior1 con 1 ‘ Random Movement
Behavior2 con 2 ‘ Photovore
Behavior3 con 3 ‘ Photophobe
Behavior4 con 4 ‘ Wall Hugger/Maze Solver
RobotForward con 5 ‘ Move Forward for 200 msec
RobotReverse con 6 ‘ Move Reverse for 200 msec
RobotLeft con 7 ‘ Turn Left for 200 msec
RobotRight con 8 ‘ Turn Right for 200 msec

Basic Stamp 2 Robot Programming 6-25

RobotLEDOn con 9 ‘ Turn on the Robot’s LED
RobotLEDOff con 10 ‘ Turn off the Robot’s LED
RobotPWM0 con 11 ‘ PWM = 0% Duty Cycle
RobotPWM1 con 12 ‘ PWM = 1st “Notch”
RobotPWM2 con 13 ‘ PWM = 2nd “Notch”
RobotPWM3 con 14 ‘ PWM = 3rd “Notch”
RobotPWM4 con 15 ‘ PWM = 100% Duty Cycle
RobotPWM con 16 ‘ Return the Current PWM Value
RobotState con 17 ‘ Return the Robot
RobotWhiskers con 18 ‘ Return State of the “Whiskers”

‘ Bit 0 - Left “Whisker”
‘ Bit 1 - Right “Whisker”

RobotCDSL con 19 ‘ Return Value of Left CDS Cell
RobotCDSR con 20 ‘ Return Value of Right CDS Cell
RobotButton con 21 ‘ Return Last Remote Button

‘ Pressed
‘ 0 - No Buttons Pressed
‘ 1 - Leftmost Button Pressed
‘ 2 - Middle Button Pressed
‘ 3 - Rightmost Button Pressed
‘ After “RobotButton” Operation,
‘ Button Save in Robot is Cleared

‘ Robot Interface Pins
SC con 14 ‘ Define the I/O Pins
SD con 15

‘ Robot Interface Variables
RobotData var byte ‘ Data Byte to Send to/Receive

‘ from Robot

‘ Robot Operation Subroutines
RobotSend ‘ Send the Byte in “RobotData”

low SC ‘ Hold Low for 1 msec before
pause 1 ‘ Shifting in Data
shiftout SD, SC, LSBFIRST , [RobotData]
high SC
return

RobotSendReceive ‘ Send the Byte in “RobotData”
low SC ‘ Hold Low for 1 msec before
pause 1 ‘ Shifting in Data
shiftout SD, SC, LSBFIRST , [RobotData]
pause 1 ‘ Wait for Operation to Complete
shiftin SD, SC, LSBPOST, [RobotData]
high SC
return

When you run this application, the robot can either be connected to the PC or
not. If it is connected to the PC, then the “debug” function “Ouch” message will ap-
pear on the PC’s screen.

In the application, you should note that the first thing I do is command the robot
to “Stop.” Despite this, the normal operations of the robot can still be commanded by

6-26 Chapter Six

the remote control. I am just pointing this out because I want to make sure that you
understand that the remote control is the highest priority control for the robot.

There is one thing that you should remember when developing your own TAB

Electronics Build Your Own Robot Kit code and that is that one of the 26 bytes
available to applications in the BS2 is used by the interface code/APIs. This means
that you have a maximum of 25 bytes available for your application.

This bit “Flag” uses one of the remaining variables for storage. Up to seven more
bits can be defined without requiring more bytes from the total available. This means
that in the “Detecting Collisions” application there are 24 bytes that are unused.

Experiment 3—Implementing the
“Photovore” in the BS2

When I described the behaviors of the TAB Electronics Build Your Own Robot

Kit, I used PBASIC “pseudo-code” to explain how the behaviors worked in a format
that you will be more familiar with as you work with the robot. To demonstrate how
accurate this representation of Behavior 2 was, I decided to convert the pseudocode
to actual BS2 PBASIC code.

The result of this experiment is listed below and can be found in the
C:\tabrobotkit\Photovore

subdirectory of your PC.
‘ Behavior2 - Implement Behavior 2 (the Photovore)
‘ In PBASIC
‘
‘ Myke Predko
‘
‘ Copyright (C) 2001 McGraw-Hill
‘
‘ { $STAMP BS2 }

‘ Variables
i var byte
j var byte

‘ Mainline
high SC ‘ Set the I/O Bits As O/P
high SD ‘ and High
pause 100 ‘ Wait for Robot to Get Setup
RobotData = RobotStop ‘ Stop Random Movement
gosub RobotSend

pause 100 ‘ Wait for Robot to Get Setup
RobotData = RobotLEDOn ‘ Flash LED Twice
gosub RobotSend
pause 500
RobotData = RobotLEDOff
gosub RobotSend
pause 500
RobotData = RobotLEDOn

Basic Stamp 2 Robot Programming 6-27

gosub RobotSend
pause 500
RobotData = RobotLEDOff
gosub RobotSend

Behavior2Loop: ‘ Read in the Current
RobotData = RobotCDSL ‘ Light Levels at Both
gosub RobotSendReceive ‘ CDS Cells
i = RobotData ‘** i = LeftCDS
RobotData = RobotCDSR ‘** j = RightCDS
gosub RobotSendReceive ‘** j = RightCDS
j = RobotData ‘** j = RightCDS

if (i = j) then Behavior2Forward ‘ Straight if Equal
if (i > j) then Behavior2Right ‘ Turn towards smaller

‘ CDS Cell Value
Behavior2Left: ‘ Left CDS Cell

RobotData = RobotLeft ‘** Robot(TurnLeft, 80ms)
gosub RobotSend ‘** Robot(TurnLeft, 80ms)
pause 75 ‘** Robot(TurnLeft, 80ms)
RobotData = RobotStop ‘** Robot(TurnLeft, 80ms)
gosub RobotSend ‘** Robot(TurnLeft, 80ms)
pause 75 ‘** Robot(TurnLeft, 80ms)
goto Behavior2Forward

Behavior2Right: ‘ Right CDS Cell
RobotData = RobotRight ‘** Robot(TurnRight, 80ms)
gosub RobotSend ‘** Robot(TurnRight, 80ms)
pause 75 ‘** Robot(TurnRight, 80ms)
RobotData = RobotStop ‘** Robot(TurnRight, 80ms)
gosub RobotSend ‘** Robot(TurnRight, 80ms)
pause 75 ‘** Robot(TurnLeft, 80ms)

Behavior2Forward: ‘ Finished Turn, go Forward
RobotData = RobotWhiskers ‘ Look for Collisions
gosub RobotSendReceive
if (RobotData <> 0) then Behavior2End
RobotData = RobotForward ‘** Robot(Forward, 80msecs)
gosub RobotSend ‘** Robot(Forward, 80msecs)
pause 75 ‘** Robot(Forward, 80msecs)
RobotData = RobotStop ‘** Robot(Forward, 80msecs)
gosub RobotSend ‘** Robot(Forward, 80msecs)
pause 75 ‘** Robot(TurnLeft, 80ms)
RobotData = RobotWhiskers ‘ Look for Collisions
gosub RobotSendReceive
if (RobotData = 0) then Behavior2Loop

Behavior2End: ‘ At Light Source, Stop
RobotData = RobotLEDOn ‘ Turn on LED
gosub RobotSend
end

6-28 Chapter Six

‘ Robot Interface Code Follows:
.
:

Note that in listing this application, I have left out the robot definitions and sub-
routines because they are exactly the same in the previous application and the “tem-
plate.bs2” file from which they were taken. For the remaining application listings, I
will also leave out this code as it is redundant and doesn’t add to your understanding
of the application. Please remember that this code is present and is called by the dif-
ferent applications.

In the actual BS2 implementation of Behavior 2, you will see that I marked the
instances with two asterisks (**) where I deviated from the pseudocode to put in ac-
tual BS2 PBASIC statements. In all the cases where the deviations were made, it was
done to change a simple statement indicating a command to the robot to the more
complex actual statements required to call the subroutines that communicate to the
robot.

When working with the CDS cell light sensors on the robot and polling their cur-
rent values using the “RobotCDSL” and “RobotCDSR” functions, remember that the
lower the value returned, the brighter the light the CDS cell is exposed to. This can
be confusing and lead to unpredictable operation of your application. If you do find
that the CDS cells do not work as you might expect, look at the code and check to
see whether or not you expect a larger value for a brighter light. If you did, then by
reversing your logic you should find that the application will now work as you de-
signed.

To test out the application, program it into the robot, turn off the robot, and go
to a darkened room with a flashlight on at one end. You will find that the robot will
move toward the flashlight as with the preprogrammed “Behavior 2” in the robot’s
microcontroller.

There is one problem with this application, and that is that it’s not very conve-
nient to execute. To try out the BS2 application code again you will have to turn off
the robot, move it, and then turn it back on in order to restart the BS2 application. I
found this to be quite annoying and not all that “user friendly.” In the next experi-
ment, I tried to rectify this problem by giving the application code the ability to start
and stop the behavior.

At the end of the application, you should notice that I put in an “end” BS2 PBA-
SIC statement. This program does not execute in an endless loop, so I made sure that
it “ended” and did not attempt to continue executing where it would attempt to in-
voke the robot interfacing subroutines.

Experiment 4—Using Buttons to Control
the Photovore

When I first implemented “Behavior 2” in the BS2, I found it annoying to have to
turn on and off the robot to start the BS2 application. Another problem with the “Ex-
periment 3” code that I didn’t mention was that if I wanted to stop the robot or move

Basic Stamp 2 Robot Programming 6-29

it while the BS2 application was executing, I would get into a “Duel” between the re-
mote control and the BS2 application. This further reduced the “user friendliness” of
the application.

The solution to this problem was to have the remote control turn the applica-
tion on and off using the three buttons (marked with a single bar, two bars, and
three bars) on the remote control. These buttons are designed to allow the remote
control to send commands to the TAB Electronics Build Your Own Robot Kit

while it executes a BS2 application. “RobotButton” returns either the number of
which button was last received by the robot of a “0” (indicating that no new button
has been pressed). After a button number has been passed to the BS2, the return
value is set to “0” indicating that no new button has been pressed as I indicated
above.

The updated application code is listed below and can be found in the
C:\tabrobotkit\Protovore with Buttons

subdirectory.
‘ Behavior2 - With Buttons
‘ Implement Behavior 2 (the Photovore) in PBASIC.
‘ Button Control Added to make the application
‘ more controllable.
‘ Button 1 (|) = Start Behavior (does this Automatically)
‘ Button 2 (||) = Stop Behavior and Run from Remote
‘
‘
‘ Myke Predko
‘
‘ Copyright (C) 2001 McGraw-Hill
‘
‘ { $STAMP BS2 }

‘ Variables
i var byte
j var byte

‘ Mainline
high SC ‘ Set the I/O Bits As O/P
high SD ‘ and High
pause 100 ‘ Wait for Robot to Get Setup
RobotData = RobotStop ‘ Stop Random Movement
gosub RobotSend

pause 100 ‘ Wait for Robot to Get Setup
RobotData = RobotLEDOn ‘ Flash LED Twice
gosub RobotSend
pause 500
RobotData = RobotLEDOff
gosub RobotSend
pause 500
RobotData = RobotLEDOn
gosub RobotSend
pause 500

6-30 Chapter Six

RobotData = RobotLEDOff
gosub RobotSend

Behavior2Loop: ‘ Read in the Current
RobotData = RobotButton ‘ Any Buttons There?
gosub RobotSendReceive
if (RobotData = 1) then Behavior2Start
if (RobotData = 2) then Behavior2End

‘ If nothing or Button3
Behavior2Start ‘ Just Carry On

RobotData = RobotLEDOff ‘ Turn off LED
gosub RobotSend
pause 75 ‘ Delay before Starting Again
RobotData = RobotCDSL ‘ Light Levels at Both
gosub RobotSendReceive ‘ CDS Cells
i = RobotData ‘** i = LeftCDS
pause 75
RobotData = RobotCDSR ‘** j = RightCDS
gosub RobotSendReceive ‘** j = RightCDS
j = RobotData ‘** j = RightCDS
pause 75

if (i = j) then Behavior2Forward ‘ Straight if Equal
if (i > j) then Behavior2Right ‘ Turn towards smaller

‘ CDS Cell Value
Behavior2Left: ‘ Left CDS Cell

RobotData = RobotLeft ‘** Robot(TurnLeft, 80ms)
gosub RobotSend ‘** Robot(TurnLeft, 80ms)
pause 75 ‘** Robot(TurnLeft, 80ms)

RobotData = RobotStop ‘** Robot(TurnLeft, 80ms)
gosub RobotSend ‘** Robot(TurnLeft, 80ms)
goto Behavior2Forward

Behavior2Right: ‘ Right CDS Cell
RobotData = RobotRight ‘** Robot(TurnRight, 80ms)
gosub RobotSend ‘** Robot(TurnRight, 80ms)
pause 75 ‘** Robot(TurnRight, 80ms)
RobotData = RobotStop ‘** Robot(TurnRight, 80ms)
gosub RobotSend ‘** Robot(TurnRight, 80ms)

Behavior2Forward: ‘ Finished Turn, go Forward
pause 75
RobotData = RobotWhiskers ‘ Look for Collisions
gosub RobotSendReceive
if (RobotData <> 0) then Behavior2End
pause 75
RobotData = RobotForward ‘** Robot(Forward, 80msecs)
gosub RobotSend ‘** Robot(Forward, 80msecs)
pause 75 ‘** Robot(Forward, 80msecs)
RobotData = RobotStop ‘** Robot(Forward, 80msecs)
gosub RobotSend ‘** Robot(Forward, 80msecs)
pause 75 ‘** Robot(TurnLeft, 80ms)
RobotData = RobotWhiskers ‘ Look for Collisions
gosub RobotSendReceive

Basic Stamp 2 Robot Programming 6-31

if (RobotData = 0) then Behavior2Loop

Behavior2End: ‘ At Light Source, Stop
pause 75 ‘ Delay before Starting Again
RobotData = RobotLEDOn ‘ Turn on LED
gosub RobotSend
pause 75 ‘ Delay before Starting Again
RobotData = RobotButton ‘ Any Buttons There?
gosub RobotSendReceive
if (RobotData = 1) then Behavior2Start
goto Behavior2End ‘ No Start, Just Loop Around

‘ Robot Interface Code Follows:
.
:

This application now executes in an endless loop and the “Photovore” behavior
can be specified when you test the application. I found that relatively simple changes
such as adding code like:

RobotData = RobotButton ‘ Any Buttons Pressed?
gosub RobotSendReceive
if (RobotData = 1) then Behavior2Start

made the application much easier to control with much less opportunity for “con-
tention” between the BS2 and the remote control for the robot’s actions.

I would recommend this type of control for all your applications to allow you to
positively stop the robot in case you see that it gets into trouble.

Experiment 5—Cylon Eye
One of the features I am looking forward to taking advantage of in the TAB Elec-

tronics Build Your Own Robot Kit is the Parallax “AppMod” connector that is built
into the robot. As I have said, this connector will allow you to add either predefined
hardware features for the robot or ones that you can build yourself using the proto-
typing AppMods available from Parallax.

The example application that I have chosen is the scanning “eye” of the big
clanking robots (see Figure 6-19) that were the humans’ enemy in “Battlestar Gal-
lactica.” While the show itself was quite forgettable, the scanning eye of the evil ro-
bots has made itself a fixture for many hardware companies as a quick visual
indication that a piece of hardware is running properly. Using the “Breadboard” App-
Mod and six components, you too can turn your TAB Electronics Build Your Own

Robot Kit into a monster that Commander Adama would have stopped at nothing to
destroy.

The AppMod circuit that I came up with is shown in Figure 6-20 and requires the
following parts:

78L05 �5-volt regulator

10 LED “bargraph” display

470-ohm 9-resistor “SIP”

6-32 Chapter Six

Basic Stamp 2 Robot Programming 6-33

Figure 6-19 Cylon Centurion from “Battlestar Galactica.”

+ +

78L05

10 µF 0.1 µF

Unregulated
Voltage In

(“VIN”)

Ground
(“VSS”)

To BS2

P0
P1
P2
P3
P4
P5
P6
P7
P8

P9
470-Ohm
º Watt

470
9-Resistor

“SIP”

10 LED
“Bargraph”

Display

Figure 6-20 Circuit built on AppMod to implement “Cylon Eye.”

470-ohm, 1/4-watt resistor

10 µF electrolytic capacitor

0.1 µF capacitor (any type)

Parallax “Breadboard” AppMod board

22-gauge connecting wire

Once you have the parts, you can wire them into the Breadboard AppMod using
the diagram shown in Figure 6-21. While it is not very hard to wire, I found that it
took me a bit of time to plan it out correctly. I suggest that when you are wiring the
10-LED bargraph display to the BS2 you start with bit “P7” and work your way back
to “P0.” This should give you a bit more space to put in the wiring.

To test out the application you can use the code below. It is found in the
C:\tabrobotkit\Cylon Eye

subdirectory of your PC’s hard drive. When you first program the robot, you might
want to take out the commented code that “Stops the Robot from Running.” This
way you will be able to test out the application code without having to use the re-
mote control to stop the robot when it is on your workbench.
‘ Cylon Eye - Run “Scanning” Eye Across LEDs
‘ Connected to LEDS connected to P0 to P9
‘ of the BS2
‘
‘ Myke Predko
‘
‘ Copyright (C) 2001 McGraw-Hill
‘
‘ { $STAMP BS2 }

6-34 Chapter Six

Vdd
Vdd
Vin
Vss
Vss
P15
P14
P13
P12
P11
P10
P9
P8

Vdd
Vdd
Vin
Vss
Vss
P0
P1
P2
P3
P4
P5
P6
P7

V
ss P
0

P
2

P
4

P
6

P
8

P
10

P
12

P
14

V
dd

V
ss

P
1

P
3

P
5

P
7

P
9

P
11

P
13

P
15

V
in AppModBread

Board

Parallax Inc

10 uF
+

0.1 uF

470

L05

470

Notch in
LED
Display

Figure 6-21 Parallax breadboard AppMod with
“Cylon Eye” application.

‘ Variables
Temp var word ‘ Get a 16 Bit Variable

‘ Mainline
high SC ‘ Set the I/O Bits As O/P

high SD ‘ and High
‘ pause 100 ‘ Stop the Robot from Running
‘ RobotData = RobotStop
‘ gosub RobotSend

OUTS = 65534 ‘ Make All the I/O Ports High
‘ Except P0,

DIRS = 65535 ‘ And Outputs

UpLoop: ‘ Move the LEDs Up
pause 100 ‘ Delay before LED Update
Temp = (OUTS * 2) + 1 ‘ Calculate New LED Value

‘ debug dec(Temp), cr ‘ #### - Output Here for Debug
if (Temp = 65023) then DownDo ‘ At the Last LED?

UPDo:
OUTS = Temp ‘ Save LED Value
goto UpLoop ‘ Repeat

DownLoop: ‘ Now, Move Back Down
pause 100 ‘ Delay before LED Update
Temp = (OUTS / 2) + 32768 ‘ Divide by 2 to come down

‘ debug dec(Temp), cr ‘ #### - Output Here for Debug
if (Temp = 65534) then UpDo ‘ Go the Other Way

DownDo:
OUTS = Temp ‘ Save the New Down Value
goto DownLoop

AppStop: ‘ #### - Stop for Data Examine
end

‘ Robot Interface Code Follows:
.
:

Of the example applications that I have presented in this chapter, this one is
probably the most confusing in terms of how it is implemented. When I developed
the application, I wanted to come up with something that was very efficient. How-
ever, it is not easy to understand unless you are familiar with a few concepts.

The most important concept to understand is that when you are wiring an LED
to a microcontroller, the cathode (negative terminal) is normally connected to the
microcontroller and the anode (positive terminal) is connected to the power supply.
The reason for wiring the LED this way is because of the operation of many initial

Basic Stamp 2 Robot Programming 6-35

microcontroller and NMOS (a precursor to CMOS) circuits. These circuits could
“sink” (pass to ground) a lot more current than they could “source” (pass from V

cc
or

V
dd

). To follow this convention, I have wired the LEDs with their cathodes wired to
the BS2 through the AppMod.

The confusing aspect of wiring the LEDs in this way is that you must drive out a
high voltage (a “1”) to turn off the LED and use a low voltage (a “0”) to turn it on. In
the “Cylon Eye” application, I first put all the BS2’s I/O ports into “output mode” and
then I write a “1” to each of the bits except for the least significant one. This will turn
off all the LEDs except for the one connected to P0.

I could have implemented the change in the active LED a number of different
ways. I elected to shift the active bit up and down by multiplication and division. To
move the LED from a lower bit to a higher bit, I multiplied the value in the 16 I/O pins
by 2 and added 1 to the result to ensure that the least significant bit would be a “1.”
Remember that the value in the I/O port is an odd number, and when you multiply an
odd number by two, you get an even number.

To go “down” the LEDs, I reversed the process by dividing the value in the I/O
port by two and adding 32,768, which sets the high bit of the I/O port: 2 to the power
15 equals 32,768.

While I’ve taken into account that the port is sixteen bits in size, note that I kept
the bits that I wrote to within the range of the ten LEDs that I wired to the AppMod
board. I am pointing this out because while there are sixteen possible bits available
to the AppMod board from the BS2, the most significant two bits (bits 14 and 15) are
used for communications with the TAB Electronics Build Your Own Robot Kit.
This means that if you want to “extend” the application with more LEDs you would
be limited to 14 bits and not the full 16 available to the BS2.

Null Applications
When I was creating my initial applications for the BS2, I found that I often

wanted to stop the robot without having to reach over for the remote control. The
following application, found in the

C:\tabrobotkit\Null

subdirectory of your PC’s hard file will stop the robot from running Behavior 1 when
it first starts executing. It will allow you to leave the robot on your work bench pow-
ered on without worrying about it trying to run away from you.
‘ Robot Null - Stop the robot’s wheels and
‘ the BS2 from controlling the robot
‘
‘ Myke Predko
‘
‘ Copyright (C) 2001 McGraw-Hill
‘
‘ { $STAMP BS2 }

‘ Mainline
high SC ‘ Set the I/O Bits As O/P
high SD ‘ and High

pause 100 ‘ Stop the Robot from Running

6-36 Chapter Six

RobotData = RobotStop
gosub RobotSend

end ‘ Nothing more to do

‘ Robot Interface Code Follows:
.
:

The second application that I found to be quite simple is just an “end” statement
executed as a BS2 application. This application is found the same subdirectory as
the previous one.
‘ Robot Null 2 - Stop BS2 Executing
‘
‘ Myke Predko
‘
‘ Copyright (C) 2001 McGraw-Hill
‘
‘ { $STAMP BS2 }

‘ Mainline
high SC ‘ Set the I/O Bits As O/P
high SD ‘ and High

end ‘ Nothing more to do

‘ Robot Interface Code Follows:
.
:

This second application is useful in cases where the robot’s BS2 has been pro-
grammed with an application but you do not want to use it and you want to avoid
having to pull out the BS2 (which could damage it). By programming this application
into the BS2, the robot will run as if there isn’t a BS2 in the socket.

Ideas for Experiments
In this chapter and the five previous ones, I have gone over a lot of information

about the TAB Electronics Build Your Own Robot Kit and presented you with the
basic knowledge needed to develop your own BASIC Stamp 2 applications. The sam-
ple applications presented in this chapter are designed to be a beginning point for
you and to whet your appetite for what you can do on your own with the robot.

I hope that you will become an active participant in the forum provided on the
TAB Electronics Build Your Own Robot Kit (on http://www.tabrobotkit.com) as
well as the StampList, and that you will share your ideas and help out others.

To finish off the chapters on this CD-ROM, I want to leave you with a few ideas
for applications that you can implement yourself using the information I have given
you. I look forward to seeing what you come up with, and I hope that you are excited
to discover how far you can push the TAB Electronics Build Your Own Robot Kit.

Basic Stamp 2 Robot Programming 6-37

• Line following robot. Add some CDS Cells to the bottom of the robot to
follow a lighter or darker line on the floor.

• Firebot. Add a pyrometer (heat sensor) and a fan to your robot and see if
you can put out a candle burning in a room.

• Robot shadow. Come up with a way the robot will follow you and only you.
• Sound-activated robot. Add a microphone with an amplifier to control the

motion of the robot. A simple example of this would be starting and stopping
each time a loud noise was “heard.” Could you expand this to respond
differently to different sounds?

• Robot animal. Using the model of behaviors, can you create a program for
your robot so that it acts like an animal? Think about how you would model
concepts such as “food,” “shelter,” “danger,” and “prey.” These are questions
and problems that continue to confound roboticists. Maybe you have the
answers to “true” artificial intelligence.

6-38 Chapter Six

