
California State University, Chico
Intelligent Systems Laboratory

Chico, CA 95929-0410
http://isl.ecst.csuchico.edu

TAB Electronics'
Build Your Own Robot Kit

with a
NetMedia

BasicX-24 microcontroller
B.A. Juliano (Juliano@csuChico.edu)
R.S. Renner (Renner@csuChico.edu)

January 2004

TAB Electronics' BYORK

● Element Products, Inc.
– 5155 West 123rd Place, Broomfield, CO 80020
– Tel. 303 466-2750
– Fax 303 466-4798
– E-mail: sales@wirz.com
– URL: http://wirz.com

● Element Products, Inc. is provider of two
educational robot kits for the McGraw-Hill
Companies. These kits are available from
Barnes & Noble and Amazon.com ...

TAB Electronics' BYORK
● BYORK Robot Anatomy

Differential drive robot, 5” long x4” wide

Body Type

TAB Electronics' BYORK
● BYORK Robot Anatomy

Single 9-volt alkaline (20-30 min/batt)

Fuel Source

TAB Electronics' BYORK
● BYORK Robot Anatomy

Full H-bridge for both motors

Locomotion

TAB Electronics' BYORK
● BYORK Robot Anatomy Sensors

I/R LEDs for collision detection
CDS cells for light level detection

TAB Electronics' BYORK
● BYORK Robot Anatomy Control

PIC16C505-
controlled

peripherals

BS2
socket

“AppMod”
socket

BS2
program-

ming
connector

I/R TV remote
control

(not shown)

TAB Electronics' BYORK

TAB Electronics' BYORK

NetMedia BasicX-24

● NetMedia Inc.
– 10940 N. Stallard Pl.,Tucson, Arizona 85737
– Tel. 520-544-4567
– Fax 520-544-0800
– E-mail: sales@netmedia.com
– URL: http://netmedia.com

● NetMedia Inc. is a leading manufacturer in
Video Distribution and Camera equipment,
embedded micro-control products, and
embedded Ethernet web products.

NetMedia BasicX-24

● What is BasicX?
– A BX-24 system combines

● BX-24 Hardware – fast Atmel AT90S8535 core
processor with a ROM for the BasicX OS, 400 B
RAM, 32 KB EEPROM, lots of I/O devices such as
timers, UARTs, ADCs, digital I/O pins, SPI
peripheral bus, and more.

● BasicX Operating System (BOS) – on-chip OS
that provides multitasking and a high-speed BasicX
execution engine.

● BasicX Development Environment – true 32-bit
Windows IDE.

NetMedia BasicX-24

● BasicX-24 Specifications:

Speed 65,000 IPS
EEPROM 32K bytes
Max program length 8000+ lines
RAM 400 bytes
Available I/O pins 21 (16 standard + 2 serial only
 + 3 accessed outside
 standard dip pin area)
Analog Inputs (ADCs) 8
Serial I/O speed 1200 - 460.8K Baud
Programming interface High speed Serial
Physical Package 24 pin DIP module

NetMedia BasicX-24

● Other features:

Pin-for-pin compatible with BS2 & BS2SX
Built-in SPI interface
On-chip voltage regulator
2 user controllable on-chip surface-mount LEDs
System clock/calendar
Multitasking
Full IEEE floating point math

NetMedia BasicX-24
Features BasicX-24 BS2 BS2SX
I/O Lines 16+ 16 16
EEPROM 32 KB 2 KB 16 K Bank Switched
RAM 400 B 32 B 96 B
Speed (IPS) 65,000 4000 10,000
Max Prog Length 8000+ ~500 ~500 inst/2K Bank
Analog Inputs 8 (10 Bit ADCs) No No
Multitasking OS Yes No No
FP Math Yes No No
PC Prog Intrfc Serial Serial Serial
Serial I/O Yes Yes Yes
On-Chip LEDs 2 (Red & Green) No No
SPI Interface Yes No No
On-Chip Regltr Yes Yes Yes
Package 24-pin DIP 24-pin DIP 24-pin DIP

NetMedia BasicX-24

The BasicX Dev't Environment

● In a nutshell ...

*.BAS
Source Code

*.BXB
BasicX binary file

*.PRF
BasicX preferences

The Basic Express Language

● General
– Modules

● allow one to split a program into multiple files.
● facilitate user control of the visibility of constants,

variables, and subprograms, which can be public
(global) or private to a module.

● Note: Module names are taken from filenames, which
means filenames (minus extensions) must be legal
Basic Identifiers.

● Note: All BasicX identifiers must start with a letter,
and all other characters must be letters, digits, or
underscores. Identifiers are case-sensitive and can
be up to 255 characters long.

The Basic Express Language
● Example Module:

Public A As Integer
Private B As Single ' Module level code ends here

Public Sub Main()
 Dim K As Integer
 A = 1
 For K = 1 to 10
 A = A + 1
 Next
 B = CSng(A)
 Call Square(B)
End Sub

Private Sub Square(X As Single)
 X = X * X
End Sub

The Basic Express Language

● General

– Main program
● Program starts execution with a procedure called

Main, which must be a public procedure.

– Statement format
● The underscore character is used as a line

continuation character for long statements extended
between two or more lines.

– Comment format
● An apostrophe character is used to denote comments.

The Basic Express Language

● Subprograms

– General
● A subprogram allows you to take a group of related

statements and treat them as a single unit.
● Subprograms consist of procedures and functions.
● The difference between a procedure and function is

that a function can appear as part of an expression,
but a procedure must be called in a standalone
statement.

The Basic Express Language

● Subprograms

– Sub procedures
● Definition syntax:

[Private|Public] Sub procedure_name(arguments)
 [statements]
End Sub

● Invocation syntax:
Call procedure_name(arguments)
or procedure_name arguments

● You can also exit a procedure by using an Exit Sub
statement.

The Basic Express Language
● Example Subprogram:

Private Sub GetPosition(ByRef X As Single)
 Call ReadDevice(X)
 If (X > 100.0) Then
 Exit Sub
 End If
 X = X * X

End Sub

The Basic Express Language

● Subprograms

– Functions
● Definition syntax:

[Private|Public] Function
 function_name(arguments) As type

 [statements]
End Function

● Note: The function return value can be defined by
assigning to the function name inside the function
itself.

The Basic Express Language
● Example Function:

Public Function F(ByVal i As Integer) As Integer
 F = 2 * i ' defines the function return value
 F = F * F ' can also read the function name
End Function

● Example with Exit Function statement:

Function F(ByVal i As Integer) As Single
 If (i = 3) Then
 F = 92.0
 Exit Function
 End If
 F = CSng(i) + 1.0
End Function

The Basic Express Language

● Subprograms

– Function return type
● Functions can return non-persistent scalar types or

string types.
● Example string function:

Function F() As String
 F = "Hello, world" ' F is write-only
End Function

● Note: Every assignment to the function return must
be immediately followed by an “Exit Function” or
“End Function” statement.

The Basic Express Language

● Subprograms

– Function return type

● Note: If a function returns an UnsignedInteger or
UnsignedLong object, the first statement in the
function must be a Set statement.

● Example:
Function F() As UnsignedInteger
 Set F = New UnsignedInteger
 [statements]
End Function

The Basic Express Language

● Subprograms

– Parameter passing
● Parameters can be passed to a subprogram by

reference (ByRef) or by value (ByVal).
● Pass by reference is the default.

● Exceptions: For types String, UnsignedInteger, and
UnsignedLong passed by value, these parameters are
write-protected in the called subprograms for
efficiency.

The Basic Express Language

● Subprograms

– Parameter passing summary:
Parameter
Scalar variable
Array element
1D array, lower bound = 1
Multidimensional array
Array with lower bound not 1
Numeric expression
Numeric literal
Boolean expression
Boolean literal
Persistent variable

ByRef
Yes
Yes
Yes
No
No
No
No
No
No
No

ByVal
Yes
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes

The Basic Express Language

● Control structures

– The If-Then statement

● Syntax:

 If (boolean_expression) Then
 [statements]
[ElseIf (boolean_expression) Then
 [statements]]
[Else
 [statements]]
 End If

The Basic Express Language

● Control structures

– The Do-Loop statement
● Syntax and variants:

Do
 [statements]
Loop
Do [While|Until] (boolean_expression)
 [statements]
Loop
Do
 [statements]
Loop [While|Until] (boolean_expression)

The Basic Express Language

● Control structures

– The Do-Loop statement

● Note: The “Exit Do” statement can be used to exit any
of the Do-Loops.

● Note: Do-Loops can be nested up to a level of ten.

The Basic Express Language

● Control structures

– The For-Next statement

● Syntax:

For index = beg_val To end_val [Step 1 | -1]
 [statements]
Next

● Note: index must be a local variable of a discrete type.
● Note: Loop counters cannot be changed inside the

loop; loop counters are treated as if they were a
constant within a loop.

The Basic Express Language

● Control structures

– The For-Next statement

● Note: The “Exit For” statement can be used to exit a
For-Next loop.

● Note: For-Next loops can be nested up to a level of
ten.

The Basic Express Language

● Control structures
– The Select-Case statement

● Syntax:

 Select Case test_expression
 Case expression_list1
 [statements]
 [Case expression_list2
 [statements]]
 [Case Else
 [statements]]
 End Select

● Note: test_expression must be a discrete, non-string
type (boolean or discrete numeric).

The Basic Express Language
● Example:

Select Case BinNumber(Count)
 Case 1
 Call UpdateBin(1)
 Case 2
 Call UpdateBin(2)
 Case 3,4
 Call EmptyBin(1)
 Call EmptyBin(2)
 Case 5 To 7
 Call UpdateBin(7)
 Case Else
 Call UpdateBin(8)
End Select

The Basic Express Language

● Control structures

– The GoTo statement
● A GoTo branches unconditionally to a specified label.

● Example:

 GoTo label_name
 [statements]

label_name:
 [statements]

● Note: Labels must be followed by a colon.

The Basic Express Language

● Variables, Constants, and Data Types

– Data types
Type Storage Range
Boolean 8 bits True .. False
Byte 8 bits 0 .. 255
Integer 16 bits -32,768 .. 32,767
Long 32 bits -2,147,483,648 .. 2,147,483,647
Single 32 bits -3.402823E+38 .. 3.402823E+38
String Varies 0 to 64 characters
BoundedString Varies 0 to 64 characters

The Basic Express Language

● Variables, Constants, and Data Types

– Declarations

● All variables must be declared before they are used.

● In module-level code (default is private):
[Public|Private|Dim] variable As type

● Inside a subprogram:
Dim variable As type

The Basic Express Language

● Variables, Constants, and Data Types

– Declarations

● Example:

Public Distance As Integer ' global
Private Temperature As Single ' local to module
Sub ReadPin()
 Dim PinNumber As Byte ' local to sub
 Dim S1 As String ' variable length
 Dim S2 As String * 1 ' 1-char string
 Dim S3 As String * 64 ' 64-char string
 [statements]
End Sub

The Basic Express Language

● Variables, Constants, and Data Types

– Constants

● In module-level code (default is private):
[Public|Private] Const
 constant_name As type = literal

● Inside a subprogram:
Const constant_name As type = literal

● Examples:
Const PI As Single = 3.14159
Private Const ROOMTEMP As Single = 70.0
Public Const MAXSIZE As Byte = 20

The Basic Express Language

● Variables, Constants, and Data Types

– Numeric literals

● Decimal integer examples:
1
-1
10
255

● Decimal floating point examples:
1.0
-0.05
1.53E20
-978.3E-3

The Basic Express Language

● Variables, Constants, and Data Types

– Numeric literals

● Hexadecimal integer examples:
&H3
&HFF
&H7FFF ' 32767
-&H8000& ' -32768 (note trailing ampersand)
* Trailing ampersands are required for hex numbers in range &H8000

(32,768) to &HFFFF (65,535)

● Binary examples:
bx00000001 ' 1
bx00001111 ' 15
bx11111111 ' 255

The Basic Express Language

● Variables, Constants, and Data Types
– Converting data types

● Note: CBool allows only a Byte type as an operand.
● Note: FixB, FixI, and FixL allow only floating point

types as operands.

Function Result
CBool Boolean
CByte Byte
CInt Integer
CLng Long
CSng Single
CStr String
FixB Byte
FixI Integer
FixL Long

} statistical rounding

} truncation

The Basic Express Language

● Variables, Constants, and Data Types

– Type declaration characters

● For floating point numbers, the exclamation point (!)
and pound sign (#) are allowable as type declaration
characters, but only if they replace a trailing “.0” in
floating point numeric literals. The following are
equivalent:
 12.0
 12!
 12#

● In VB and other Basic dialects, (!) signifies single
precision, and (#) signifies double precision.

The Basic Express Language

● Variables, Constants, and Data Types

– Type declaration characters

● As indicated earlier, hexadecimal numeric literals in
range 32,768 (&H8000) to 65,535 (&HFFFF) are
required to have ampersand type declaration
characters.

● Note: It is illegal to append type declaration characters
to variable names or to numeric literals with fractional
parts.

The Basic Express Language

● Variables, Constants, and Data Types
– Arrays

● Arrays can be declared for all data types except strings and
other arrays.

● Examples:
Dim I(1 To 3) As Integer, _
 J(-5 To 10, 2 To 3) As Boolean
Dim X(1 To 2, 3 To 5, 5 To 6, 1 To 2, 1 To 2, _
 1 To 2, -5 To -4) As Single

● Arrays can have 1 to 8 dimensions, and both upper and
lower bound of each index must be declared.

● For parameter passing:
Dim I(1 To 5) As Byte ' Can be passed
Dim J(0 To 5) As Byte ' Can't – lower bound not 1
Dim K(1 To 2, 1 To 3) As Byte ' Can't – not 1D

The Basic Express Language

● Variables, Constants, and Data Types
– Persistent variables

● are stored in EEPROM memory; hence, they retain
their values even after power is turned off.

● must be declared at module level and are not allowed
as local variables.

● Declaration syntax:
[Public|Private|Dim] variable
 As New persistent_type

 where persistent_type is:
PersistentBoolean|PersistentByte|
PersistentInteger|PersistentLong|
PersistentSingle

The Basic Express Language

● Variables, Constants, and Data Types
– Rules for Persistent variables:

1. All persistent variables should be declared in one
module.

2. The ordering of declarations of persistent variables
must match the order in which the variables are
accessed (via read or write operation).

3. All persistent variables should be private.

● Note: These rules guarantee the ordering of persistent
variables in EEPROM so that the location of each
variable is the same after cycling power on and off.

The Basic Express Language

● Expressions

– General

● BasicX uses strong typing, which means binary
operators must operate on equivalent types.

● Both sides of an assignment statement must be of the
same type; hence, each argument passed to a
subprogram must have the correct type.

The Basic Express Language

● Expressions

– Relational operators

● Relational operators yield a Boolean type.
● The equality and inequality operators require operands

of Boolean or numeric types; all other operators
require numeric types.

Equality =
Inequality <>
Less <
Greater >
Less or equal <=
Greater or equal >=

The Basic Express Language

● Expressions

– Logical operators

● Logical operators require operands of Boolean type or
unsigned discrete types (Byte, UnsignedInteger, or
UnsignedLong), and the resulting type matches that of
the operands.

● When operands are numeric types, bitwise operations
are done.

And
Or
Not
Xor

The Basic Express Language

● Expressions

– Arithmetic operators

● Arithmetic operators require numeric operands.
● Note that there are separate operator symbols for

floating point and discrete operands.

Addition +
Subtraction -
Multiplication *
Division (float) /
Division (integer) \
Modulus Mod
Absolute value Abs

The Basic Express Language

● Expressions

– String operators

● Strings can be concatenated.
● Generally, if the destination string is larger than the

resulting string, the result is left-justified and blank-
filled. If the destination string is smaller, the result is
truncated.

Concatenation &

The Basic Express Language

● Expressions

– Operator precedence
(Highest) [1] Abs Not

[2] * \ / Mod And
[3] + - Or Xor

(Lowest) [4] = > < <> <= >=

The Basic Express Language

● Expressions

– Assignment statements

● Syntax:
variable = expression

● The types of both sides of an assignment statement
must match. No implicit type conversions are done.

The Basic Express Language

● Unsigned Types

– General

● The following unsigned integer types are provided:
Type Storage Range
Byte 8 bits 0 .. 255
UnsignedInteger 16 bits 0 .. 65,535
UnsignedLong 32 bits 0 .. 4,294,967,295

The Basic Express Language

● Unsigned Types

● UnsignedInteger and UnsignedLong are treated as
classes, and are subject to the following rules:

1. If you want to declare unsigned objects as local or
module-level variables, you need to use the New
keyword:

 Dim I As New UnsignedInteger

However, the New keyword is not required in
subprogram parameter lists:

 Private Sub S(ByRef I As UnsignedInteger)

The Basic Express Language

● Unsigned Types
2. Functions that use unsigned object returns must have

a Set statement as the first line of the function.

 Function F() As UnsignedInteger
 Set F = New UnsignedInteger
 F = 65535
 End Function

3. Unsigned objects cannot be used in Const
statements.

3. If you pass an unsigned object by value, the object is
treated as if it were write-protected within the called
subprogram.

The Basic Express Language

● Unsigned Types

– Type conversions
CuInt Converts any discrete type to UnsignedInteger
CuLng Converts any discrete type to UnsignedLong
FixUI Truncates FP type, converts to UnsignedInteger
FixUL Truncates FP type, converts to UnsignedLong

The Basic Express Language

● Unsigned Types

– Known bugs
1. The following arithmetic operations are not allowed

for UnsignedLong types:

 * \ Mod

2. Portability issue – if an UnsignedInteger or
UnsignedLong is used as a formal parameter, and if
the object is passed by value, the actual parameter is
supposed to be restricted to a single object. BasicX
erroneously allows numeric literals and expressions
as actual parameters.

The Basic Express Language

● Strict vs. Permissive Syntax Rules

– Compiler option

● The compiler can be configured to use either strict or
permissive syntax rules.

● This option affects how numeric literals, logical
expressions, and For-Next loop counters are treated.

● The default is to use strict rules.

The Basic Express Language

● Strict vs. Permissive Syntax Rules

– Permissive rules

● For-Next loop counters

– Counters are not required to be local variables.
– Counters are not write-protected inside loops.
– The scope of a counter is not restricted to its loop.

The Basic Express Language

● Strict vs. Permissive Syntax Rules

– Permissive rules

● Numeric literals and logical operations

– Signed discrete types (Integer and Long) are
allowed to appear in bitwise-logical expressions.

– A wider choice of type declaration characters that
can be appended to hexadecimal numeric literals
are available. You can use ampersand or percent
characters, or no characters.

The Basic Express Language

● Strict vs. Permissive Syntax Rules

– Known bugs

● In permissive mode, some hexadecimal numeric
literals result in incorrect values for UnsignedLong
types. For example, if X is type UnsignedLong, the
assignment X=&HFFFFFFFF sets X to 65,535 rather
than the correct 4,294,967,295.

● A workaround is to turn on strict syntax checking.

The Basic Express Language

● Miscellaneous statements

– Attribute statement

● Attribute VB_Name statements are ignored. All
other attribute statements are illegal.

● Example:

 Attribute VB_Name = "MyFirstModule"
● Note: In Visual Basic, module names are taken from the

VB_Name attribute; BasicX derives module names directly
from module filenames.

The Basic Express Language

● Miscellaneous statements

– Option statement

● Option Explicit requires that variables are
declared before use, which is the default in BasicX.
All other Option statements are illegal.

● Syntax:

 Option Explicit

The Basic Express Language

● Miscellaneous statements

– With statement

● A With statement facilitates use of shorthand
identifiers for objects, which means the object name
qualifier can be omitted from an object reference.

● Currently, these statements can only be used with
Register objects. No other objects are allowed in
With statements.

The Basic Express Language

● Miscellaneous statements

– With statement

● A With statement can only be used inside a
subprogram, and a With statement that precedes a
block of code must be terminated by an End With
statement at the end of the block, but before the end
of the subprogram.

● Nested With statements are not allowed.

The Basic Express Language

– With statement

● Syntax:

 With Register
 [statements]
 End With

● Example code:

 ' The following assignments are equivalent.

 Register.OCR1AH = 255
 With Register
 .OCR1AH = 255
 End With

The Basic Express Compiler

● BasicX Programming Environment
– BasicX Software – Complete

● Includes Downloader/Compiler/Editor, BasicX
Documentation, Example Files, Application Notes, and
ATMEL docs.

● http://basicx.com/downloads/bx-setup-210-complete.zip
– BasicX Software – Program Only

● Includes Downloader/Compiler/Editor only.
● http://basicx.com/downloads/bx-setup-210-program.zip

– BasicX Software – Documents Only
● Includes BasicX Documentation, Example Files,

Application Notes, and ATMEL docs only.
● http://basicx.com/downloads/bx-setup-210-docs.zip

The Basic Express Compiler

● Downloader
– The BasicX Downloader is where executable files

are downloaded and run on the BasicX system.
Title Bar

Progress Bar

Status Bar

Status Window

Open download file
Open editor

Stop processor
Execute

Reset processor
Download program

Clear status window

The Basic Express Compiler

● The File Menu
– allows one to open BXB and PRF files.

The Basic Express Compiler

● The Processor Menu
– allows one to select which BasicX system type to

use.

The Basic Express Compiler

● The I/O Ports Menu
– allows one to configure communications ports.

The Basic Express Compiler

● The About Menu

The Basic Express Compiler

● The BasicX Editor/Compiler

Currently open project
Module name

The Basic Express Compiler

● The BasicX Editor/Compiler

– The File Menu

The Basic Express Compiler

● The BasicX Editor/Compiler

– The Edit Menu

The Basic Express Compiler

● The BasicX Editor/Compiler

– The Compile Menu

The Basic Express Compiler

● The BasicX Editor/Compiler

– The Options Menu

The Basic Express Compiler

● The BasicX Editor/Compiler

– The Project Menu

The Basic Express Compiler

● The BasicX Editor/Compiler

– The Chip Dialog Box of the Project Menu

Basic Express OS Reference

● Limitations on Persistent Variables:
– Write cycle limits

● Typically the EEPROM inside a BasicX chip is
guaranteed for 100,000 write cycles; reading,
however, is practically infinite.

– Write time
● Each byte takes approximately 4ms to write – much

longer than a RAM-based variable.
– Parameter passing

● Persistent variables can only be passed by value.
– Module level declarations

● All persistent variables must be declared in module-
level code.

Basic Express OS Reference

● Block Data Classes
– Array initialization issues

● BasicX provides the following system-defined block
data classes (must be declared at module level):

 1-Dimensional array classes (byte only):
 ByteVectorData[RW]
 2-Dimensional array classes:
 [Byte|Integer|Long|Single]TableData[RW]

● Example object declarations:
' B is a 1D byte array, read-only
 Dim B As New ByteVectorData
' BRW is a 1D byte array, read-write
 Public BRW As New ByteVectorDataRW
' S is a 2D float array, read-only
 Private S As New SingleTableData

Basic Express OS Reference

● Block Data Classes
– Source method

● defines the data file from which an object gets its data;
the file is read at compile time, then loaded into
EEPROM at the same time the BasicX program is
downloaded.

● Example:
' B is a 1D byte array, read-only
 Call B.Source("ByteVector.txt")
' BRW is a 1D byte array, read-write
 Call BRW.Source("C:\Temperatures.dat")
' S is a 2D float array, read-only
 Call S.Source("CalibrationCurve.dat")

● The Source method must be called before reading or
writing the object's internal data.

Basic Express OS Reference

● Block Data Classes
– Value property

● 1D block data objects are treated similar to 1D
arrays, where the index corresponds to the row
number. Row numbering starts at 1.

● 2D block data objects are treated similar to 2D
arrays, where the first index corresponds to the
column number and the second index is the row
number. Column and row numbering starts at 1.

● Note: A block data object is similar to a persistent
variable in regards to write cycle limitations and the
amount of time it takes to write to the object.

Basic Express OS Reference

● Block Data Classes
– DataAddress property

● The DataAddress property returns the starting
EEPROM address of the object's internal data.

● DataAddress is type Long and is read-only.
● Example:

 Dim T As New IntegerTableData, Addr As Long
 Dim A1 As Integer, A2 As Integer
 [...]
 Addr = T.DataAddress
' These two statements are equivalent
 A1 = T(1,1)
 Call GetEEPROM(Addr,A2,2)
' At this point A1 and A2 are equal

Basic Express OS Reference

● Multitasking

– One of the most powerful features in BasicX is its
ability to have multiple tasks running at the same
time.

– Multitasking programs typically need more RAM
than programs with a single task.

● Each task (other than the main program) needs its
own explicit stack.

● Each task stack is a byte array that must be located in
module-level (static) code.

● You may need to empirically determine the task stack
size ...

Basic Express OS Reference
● Multitasking

– In BasicX:
● Tasks are timeshared on a first-come, first-served

basis, except for tasks triggered by hardware
interrupts.

● Under normal conditions, tasks are switched every
clock tick (the tick frequency is 512Hz).

● A user can explicitly allow the next task to run with a
Call Sleep(0.0) statement, which returns
immediately if no other task is ready.

● Tasks are like ordinary procedures without
parameters; tasks are called with the CallTask
instruction.

● Refer to pages 13-19 of the Basic Express Operating
System Reference for additional information ...

Basic Express OS Reference

● Semaphores
– can be used to keep two tasks from using the same

variable at the same time.
– implementation, if written in Basic:

Function Semaphore(ByRef Flag As Boolean) As Boolean
 ' Is the flag available?
 If Not Flag Then
 ' Take possession of the flag
 Flag = True
 ' Tell the world we have it
 Semaphore = True
 Else
 ' Someone else has the flag
 Semaphore = False
 End If
End Function

Basic Express OS Reference

● Queues
– useful as data buffers in serial communications.
– ideal for transmitting data between tasks.

● Queues are internally implemented as a circular
buffer, and pointers for the queue are maintained
within the queue itself.

● Internal pointer overhead requires 9 bytes; hence,
defining a 20 byte queue array leaves 11 bytes
available for data.

● Example:
 Dim MyQueue(1 To 12) As Byte, B As Byte
 Call OpenQueue(MyQueue,12)
 Call PutQueue(MyQueue,3,1)
 Call GetQueue(MyQueue,B,1)

Basic Express OS Reference

● Real Time Clock

– The OS has a built-in Real Time Clock (RTC) that
automatically keeps track of date and time.

● A group of system calls is available to read or set the
clock.

● Example:
 Dim Hr As Byte, Mn As Byte, Sc As Single
 Call GetTime(Hr,Mn,Sc)
 If (Hr = 21) And (Mn = 0) Then
 Call TurnOnIrrigation
 End If

Basic Express System Library

● Math functions
Abs Absolute value
ACos Arc cosine
ASin Arc sine
Atn Arc tangent
Cos Cosine
Exp Raises e to a specified power
Exp10 Raises 10 to a specified power
Fix Truncates a floating point value
Log Natural logarithm
Log10 Logarithm base 10
Pow Raises an operand to a power
Randomize Sets the seed for Rnd
Rnd Generates a random number
Sin Sine
Sqr Square root
Tan Tangent

Basic Express System Library

● String functions
Asc Returns ASCII code of a character
Chr Converts a numeric value to a character
LCase Converts a string to lowercase
Len Returns the length of a string
Mid Copies a substring
Trim Trims leading and trailing blanks
UCase Converts a string to uppercase

Basic Express System Library

● Memory-related functions
BlockMove Copies a block of data from one RAM location to another
FlipBits Generates mirror image of bit pattern
GetBit Reads a single bit from a variable
GetEEPROM Reads data from EEPROM
MemAddress Returns the address of a variable or array
MemAddressU Returns the address of a variable or array
PersistentPeek Reads a byte from EEPROM
PersistentPoke Writes a byte to EEPROM
PutBit Writes a single bit to a variable
PutEEPROM Writes data to EEPROM
RAMPeek Reads a byte from RAM
RAMPoke Writes a byte to RAM
SerialNumber Returns the version number of a BasicX chip

Basic Express System Library

● Queue functions
GetQueue Reads data from a queue
OpenQueue Defines an array as a queue
PeekQueue Looks at queue data without removing data
PutQueue Writes data to a queue
PutQueueStr Writes a string to a queue
StatusQueue Determines if a queue has data available

Basic Express System Library

● Tasking functions
CallTask Starts a task
CPUSleep Puts processor in various low-power modes
Delay Pauses task and allows other tasks to run
DelayUntilClockTick Pauses task until next RTC tick
FirstTime Determines whether program has been run
LockTask Locks task; prevents other tasks from running
OpenWatchDog Starts the watchdog timer
ResetProcessor Resets and reboots the processor
Semaphore Coordinates data sharing via semaphores
Sleep Pauses task and allows other tasks to run
TaskIsLocked Determine whether a task is locked
UnlockTask Unlocks a task
WaitForInterrupt Allows a task to respond to a hardware interrupt
WatchDog Resets the watchdog timer

Basic Express System Library

● Type conversion functions
CBool Convert Byte to Boolean
CByte Convert to Byte
CInt Convert to Integer
CLng Convert to Long
CSng Convert to floating point (Single)
CStr Convert to String
CuInt Convert to UnsignedInteger
CuLng Convert to UnsignedLong
FixB Truncate FP value, converts to Byte
FixI Truncate FP value, converts to Integer
FixL Truncate FP value, converts to Long
FixUI Truncate FP value, converts to UnsignedInteger
FixUL Truncate FP value, converts to UnsignedLong
ValueS Convert to String to a float (Single) type

Basic Express System Library

● Real time clock functions
GetDate Returns the date
GetDayOfWeek Returns the day of week
GetTime Returns the time of day
GetTimestamp Returns the date and time of day
PutDate Sets the date
PutTime Sets the time of day
PutTimestamp Sets the date, day of week, and time of day
Timer Returns floating point seconds since midnight

Basic Express System Library
● Pin I/O functions

ADCToCom1 Streams data from ADC to serial port
Com1ToDAC Streams data from serial port to DAC
CountTransitions Count logic transitions on an input pin
DACPin Generate pseudo-analog voltage at output pin
FreqOut Generate dual sine waves on output pin
GetADC Returns analog voltage
GetPin Returns logic level of an input pin
InputCapture Records pulse train on the input capture pin
OutputCapture Sends pulse train to the output capture pin
PlaySound Plays sound from sampled data in EEPROM
PulseIn Measures pulse width on an input pin
PulseOut Sends a pulse to an output pin
PutDAC Send pseudo-analog voltage to an output pin
PutPin Configure pin to 1 of 4 input or output states
RCTime Measures time delay until pin transition occurs
ShiftIn Shifts bits from an I/O pin into a byte variable
ShiftOut Shifts bits out of a byte variable to an I/O pin

Basic Express System Library

● Communications functions
Debug.Print Sends String to Com1 serial port
DefineCom3 Defines parameters for serial I/O on arbitrary pin
Get1Wire Receives data bit using Dallas 1-Wire protocol
OpenCom Opens an RS-232 serial port
OpenSPI Opens SPI communications
Put1Wire Transmits data bit using Dallas 1-Wire protocol
SPICmd SPI communications
X10Cmd Transmits X-10 data

References

● BasicX-24 microcontroller website,
http://basicx.com

● Intelligent Systems Lab website,
http://isl.ecst.csuchico.edu

● NetMedia Inc. website,
http://netmedia.com

● NetMedia, 2002. Basic Express
Compiler User's Guide, v 2.0.

● NetMedia, 2002. Basic Express
Language Reference, v 2.0.

● NetMedia, 2002. Basic Express
Operating System Reference, v 2.0.

● NetMedia, 2002. Basic Express
System Library, v 2.0.

● NetMedia, 2002. BX-24 Hardware
Reference.

● TAB Electronics, Build Your Own
Robot Kit website,
http://www.tabrobotkit.com

