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Abstract

This paper presents an optimization of POSIT (Pose from Orthographic and Scaling with Iterations), a model-based camera
location algorithm, in the domain of indoor mobile robot navigation. The method finds the rotation matrix and the translation
vector of the camera with respect to an object. The novelty of the proposed modified algorithm is that it does not need the
perfect knowledge of camera parameters. A new definition of the scaling factor has been introduced in the scaled orthographic
projection. Due to the peculiarity of the indoor bounded workspace a new formulation of the translation vector has been used.
The new method has been successfully applied in a real environment considering a goal-directed navigation task for our real
robot Khepera. The experimentation has shown better results in comparison with the original POSIT algorithm.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of camera localization relative to real
world objects by using a single view arises in sev-
eral domains of application such as autonomous robot
navigation, object tracking, telepresence, virtual and
augmented reality and so on[7,12,13,16,26,27,31].

Relating to the robot navigation area, several meth-
ods to estimate the robot position and orientation
(which is known as ‘pose’) can be found in literature
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[9,23,28]. Most of them use visual patterns or land-
marks for self-localization, usually represented by 3D
models which must be matched to their correspond-
ing 2D projections in the image plane[4]. Sometimes
artificial landmarks are preferred to make easier the
problem associated with the recognition of naturally
occurring patterns[6,26], but this requires to structure
the environment that is not always possible.

In visual servoing domain[14] the localization
methods are classified on the basis of the required
knowledge about the target and the camera parame-
ters. Depending on the knowledge of the 3D target
model, model-based[8] or model-free[3] visual ser-
voing approaches can be used. The common problem
to both the approaches is the matching problem, cur-
rently studied by most researchers in the field. In
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particular it consists in establishing correspondences
between the target model and the current image[15]
for model-based approaches and between the refer-
ence image and the current one[32] for model-free
approaches.

If feature correspondence is known, several tech-
niques for solving the problem of model-based pose
recovery have been presented in literature[19]. Ac-
cording to the nature of the camera models and of
the mathematical techniques employed, they can be
grouped in: analytical, numerical and affine tech-
niques.

The first solution to the problem of model-based
pose recovery with a full-perspective camera model
belongs to the analytical group and is due to Fischler
and Bolles[11]. They present a new solution to the
problem of camera location based on the RANSAC
paradigm, a methodology proposed for processing
large data sets with gross errors or outliers. They
obtain solutions considering three and four coplanar
feature points as well as six points in general posi-
tion demonstrating their uniqueness. Unfortunately
there is a lack of generality, i.e. no reference is given
about the existence and uniqueness of the solution in
the general case. The solution based on four copla-
nar point has been successively implemented for the
estimation of the position of a robot[17].

Different analytical methods for the estimation
of camera pose from line segments instead of point
features have also been developed[2,5,10,18]. One
of the weaknesses of the analytical techniques is the
presence of multiple solutions. Although different al-
ternatives have been proposed[25] to deal with them,
they do not guarantee the uniqueness of the solution.
Furthermore, these methods are computationally ex-
pensive and, since they are based only on a small num-
ber of correspondences, they can produce completely
wrong results if some incorrect feature matches occur.

In the case of numerical methods, an error function
expresses the distance between each image feature
and the projection of the corresponding feature in the
real world by using the current camera location. This
transformation is corrected by an iterative process
starting from the initial estimate of the camera loca-
tion. Within these methods, Lowe’s algorithm[20–22]
was the first attempt to use this technique. Ait-Aider
et al. developed an adaptation of this method to mo-
bile robot self-localization[1]. These solutions are in

general more accurate than the analytical ones, but
they are more complex and computationally demand-
ing, then their application in real-time contexts is
difficult, if not impossible.

Finally the affine solutions are based on the use of
linearized camera models (weak-perspective and para-
perspective camera models), avoiding the intrinsic
non-linearity of the geometrical constraints that arises
when the imaging process is modeled as a perspective
transformation. These techniques are simple, efficient
and, contrary to the analytical solutions, they work
for scenes with an arbitrary number of features. The
POSIT algorithm[8] falls within these techniques.
It is based on geometric considerations that com-
bine perspective projection and scaled orthographic
projection (SOP) applied to feature points. The idea
POSIT bases on is firstly to calculate the pose with
a weak-perspective camera model (SOP), and then
to refine the obtained pose in a loop to go towards a
full-perspective pose estimation. The main advantage
of this method consists of its very low computational
cost, then it is well suited for real-time applications.
However, linearized camera models are approxima-
tions whose validation is sometimes questionable in
practice in terms of accuracy and robustness of pose
estimation.

In this paper we present a new formulation of POSIT
algorithm. It has been deeply studied and analyzed
considering our application field of interest: the mo-
bile robot navigation domain. In this context our con-
cern is the estimation of the pose of mobile robot with
respect to a target object in its workspace environ-
ment. The original formulation of POSIT algorithm
has been tested on synthetic data first. Then both al-
gorithms, POSIT and the proposed new formulation,
have been compared by using real images acquired by
the on-board camera of the Khepera mini robot. Our
aim is to estimate the pose of the robot by means of
an algorithm offering improved performance in terms
of efficiency, robustness and precision. Even though
the significant lens distortion caused by the poor qual-
ity of the camera mounted on the Khepera robot and
the bounded workspace the real experimentation has
proved the reliability and the accuracy of the new for-
mulation of the algorithm.

In particular the main contribution of our work con-
cerns the new definition of the SOP scaling factor. It
has been defined in a way that allows one to apply
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the method to uncalibrated real images. This is a fun-
damental property since in real-time robotics applica-
tions the calibration process is often tedious or unfea-
sible. Finally due to the peculiarity of the bounded ex-
perimental workspace we have developed a new for-
mulation of the translation vector which joins the robot
position to the reference frame of the target object. In
addition to improve efficiency, accuracy and robust-
ness of the robot task we have inserted the new for-
mulated method in a control system made up of two
closed loops.

The rest of the paper is organized as follows.
In Section 2, the original formulation of POSIT
algorithm is presented and the results obtained in
simulation with synthetic data are shown.Section 3
discusses the modifications and the improvements to
the algorithm in order to adapt it to the indoor nav-
igation context. InSection 4experimental results on
real images and the evaluation of the performance of
the new method in comparison with the original one
are illustrated.Section 5presents the developed con-
trol scheme of the robot for reaching a goal position
and the relative experimental results. Finally some
conclusions are drown at the end of the paper.

2. POSIT algorithm

In this section we firstly introduce the formulation
of the original version of the POSIT algorithm pro-
posed by DeMenthon and, successively, we show the
validation of the method using synthetic data.

2.1. Original POSIT algorithm formulation

The POSIT algorithm finds the pose of an object
from a single image, on the base of the 3D target
model in the object coordinate frame of reference.
Necessary conditions are the extraction of at least four
non-coplanar points and the matching of the extracted
feature with the corresponding model points. It com-
bines two algorithms. The first, called POS (Pose from
Orthography and Scaling), approximates the perspec-
tive projection with a scaled orthographic projection
and finds the rotation matrix and the translation vec-
tor of the robot coordinate frame with respect to the
target coordinate frame of reference by solving a lin-
ear system. The second algorithm, POSIT (POS with

Fig. 1. SOP (pi) and perspective projection (mi) of an object point
Mi and a reference pointM0.

Iterations), is an iterative method that applies POS to
the approximate pose found in the previous step in or-
der to compute better scaled orthographic projections
of the feature points.

In a pin-hole camera model, as shown inFig. 1, a tar-
get object, with feature pointsM0, . . . ,Mi, . . . ,Mn,
is positioned in the camera field of view. The focal
length f, the Mi coordinates in the object coordinate
frame of reference pointM0 and the image pointsmi

having image coordinate (xi, yi) are all known. The
coordinates (Xi, Yi, Zi) of the pointsMi in the camera
coordinate system are unknown. The goal is to com-
pute the rotation matrix and the translation vector of
the object directly, without solving explicitly for the
coordinates (Xi, Yi, Zi).

The rotation matrix is the matrix whose rows are
the coordinates of the unit vectorsi, j and k of the
camera coordinate in the object coordinate frame. The
translation vectorT is the vectorOM0 between the
centre of projection, O, and the reference pointM0,
the origin of the object coordinate frame of reference.
Therefore the coordinates of the translation vector are
X0, Y0, Z0. If this point M0 has been chosen to be a
visible feature point for which the image is a point
m0, this translation vectorT is aligned with vector
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Om0 and is equal toZ0/f Om0. Since the vectork is
obtained by the cross-producti × j, the object pose is
fully defined oncei; j andZ0 are computed.

After the problem has been defined, the fundamen-
tal equations of Scaled Ortografic Projection (SOP)
and Perspective Projection can be introduced. SOP is
an approximation of the true perspective projection.
In this approximation, allMi points have the same
depthZ0 as the reference pointM0. In SOP, then, the
image point pi of object pointMi has the following
coordinates:

x′
i = f

Xi

Z0
, y′

i = f
Yi

Z0
. (1)

In the perspective projection the image pointmi of
the same pointMi has coordinates

xi = f
Xi

Zi

, yi = f
Yi

Zi

. (2)

The ratios = f/Z0 is the scaling factor of the SOP.
FromFig. 1 it can be observed that vectorM0Mi is

the sum of three vectors:

M0Mi = M0Ni + NiPi + PiMi. (3)

This equation can be early expressed using the triangle
similitude as

M0Mi = Z0

f
m0mi + M0Mi · K

f
Cmi + PiMi. (4)

The dot product ofEq. (4)with the unit vectorsi and
j gives the following equations:

M0Mi · f

Z0
i = xi(1 + εi) − x0; (5)

M0Mi · f

Z0
j = yi(1 + εi) − y0; (6)

whereεi is defined as

εi = 1

Z0
M0Mi · k. (7)

Using SOP the vectorM0Mi is the sum of two vectors
M0Pi andPiMi . In this case,Eq. (4)can be written as

M0Mi = Z0

f
m0mi + PiMi. (8)

The dot product ofEq. (8)with the unit vectorsi and
j gives the following equations:

M0Mi · f

Z0
i = x′

i − x0; (9)

M0Mi · f

Z0
j = y′

i − y0. (10)

Comparing these equations withEqs. (5) and (6), it can
be observed that it is possible to writepi coordinates
as

x′
i = xi(1 + εi); (11)

y′
i = yi(1 + εi). (12)

Eqs. (5) and (6)can also be written as

M0Mi · I = xi(1 + εi) − x0 (13)

M0Mi · J = yi(1 + εi) − y0; (14)

whereI = (f/Z0)i andJ = (f/Z0)j.
If εi is known,Eqs. (13) and (14)provide a linear

system of equations in which the only unknowns areI
andJ. OnceI andJ have been computed, the scaling
factorss1 = (I·I)1/2, s2 = (J·J)1/2 ands = (s1+s2)/2
are obtained. The unit vectorsi andj derive from the
normalization ofI andJ by means ofs1 ands2 in the
following way: i = I/s1; j = J/s2.

The POS algorithm finds the pose for which the
point Mi has, as scaled orthographic projections, the
image pointpi. In this caseεi is equal to zero.

This solution is an approximation becauseεi is not
exact. Oncei andj have been computed, a more exact
εi, can be computed in the POSIT algorithm, and the
equations can be solved again with these better values.
The newεi is obtained fromEq. (7) computing the
unit vectork and thez coordinateZ0 of the translation
vector asZ0 = f/s.

By iterating these steps, the method converges to an
accurate SOP image and an accurate pose. The method
is stopped when the scaled orthographic image points
are the same as those found at the previous step.

In this case, output pose using values found at the
last iteration are the full translation vectorOM0 and
the rotation matrix with row vectorsi, j, andk defined
in the following way:

OM0 = Om0

s
; (15)

R =


iu iv iw
ju jv jw
ku kv kw


 . (16)
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Fig. 2. Iterations of the POSIT algorithm on the image plane. (a) Iterations of image points on the image plane: (∗) image points during
each iteration of the POSIT algorithm; (�) convergence of the image points. (b) Iterations of the cube on the image plane: (- - -) cube on
the image plane during each iteration of the POSIT algorithm; (—) cube on the image plane at the convergence point.

2.2. Evaluation of the original method using
synthetic images

In order to determine the performance of the devel-
oped POSIT algorithm, experimental tests using syn-
thetically generated images have been executed. This
procedure provides exact reference values to which
the evaluated measures can be compared.

The algorithm has been evaluated using as input
data a list of 2D image points and a list of correspond-
ing 3D object points reported by DeMenthon in the
presentation of the original method[8]. The target ob-
ject is a cube and the reference point (one of the cube
corners) is positioned on the optical axis so the trans-
lation vector is made up only of the component along
the optical axis. The algorithm successively converges,
as it is shown inFig. 2. In Fig. 2(a) image points at
each iteration are plotted.Fig. 2(b) shows the perspec-
tive projection on the image plane of the cube used
to perform the experiment during each iteration of the
method after the application of the rotation matrix and
the translation vector.

Moreover, we have analyzed the pose parameter er-
rors with respect to the number of the considered fea-
ture points, as it is shown inFig. 3.

It is possible to notice that the pose parameters er-
rors decrease when the number of feature points in-
creases. Nonetheless, even in the worst case (four

non-coplanar points) the difference with respect to the
other cases is negligible.

Successively, we have changed the 3D object using
the parallelepiped shown inFig. 4and we have chosen
an arbitrary pose, composed by

• Translation vector (cm): [tx, ty, tz] = [4,5,20];
• Euler angles (◦): [θ, ϕ, φ] = [30,40,50];

where the zeta component of the translation vector is
along the optical axis.

We have evaluated the pose parameters errors with
respect to the ratio of the distance to the camera to the
object size. Five ratios have been considered: the first
five powers of two. The orientation and the translation
errors obtained are shown inFig. 5. We can observe
that errors, especially on the zeta component of the
translation vector, increase in proportion to the ratio.
In fact, the pixel quantization of the camera makes
progressively difficult to appreciate the displacement
of a point in the scene.

Another evaluation has been done on the influence
of errors on the image points: we have tested the al-
gorithm robustness and accuracy when noisy image
points are considered to belong to the model. We have
considered a range of two noise pixels around each
image point. The errors modify the relative geometry
and the resulting pose computation. Since the rota-
tion and the translation vector are obtained using di-
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Fig. 3. Different pose parameters errors depending on the number of utilized feature points considering all possible combinations. (a) Mean
error of the orientation angles: (·-·-·-) mean error ofφ angle; (- - -) mean error ofθ angle; (—) mean error ofϕ angle. (b) Mean error of
the translation vector: (—) mean error of the translation vector component along the optical axis.

Fig. 4. Parallelepiped used in the simulation as object target.

rectly the information on the reference image point,
Eqs. (15) and (16), the biggest pose estimation error
is on the bounds of the noise regions placed in this
point.

Table 1
Pose estimation error depending on the presence of wrong image points

Noise source (pixel) Errortx (cm) Error ty (cm) Error tz (cm) Error θ (◦) Error ϕ (◦) Error φ (◦)

NO 0.000313 0.000392 0.001566 0.047043 0.490235 0.540647
Point 1 (2, 2) 0.050441 0.049901 0.010810 0.013806 1.195934 0.816510
Point 1 (−2, −2) 0.050103 0.049463 0.012809 0.093172 2.184758 1.910571
Point 1 (2,−2) 0.046296 0.060366 0.031265 0.652733 0.472263 0.570506
Point 1 (−2, 2) 0.046077 0.061021 0.033208 0.569025 0.491358 0.529962
Point 8 (2, 2) 0.018930 0.023663 0.094652 0.046421 1.135691 0.924275

In Table 1the maximum error values relative to each
component, in correspondence with the noise source
that has generated them, are shown in bold. As it can
be seen, all maximum values are generated in the noise
region placed on the reference point (point 1), except
for the zeta component of the translation vector which
depends only on the focal length and the scaling factor,
as explained inSection 2.1.

Finally we have analyzed the accuracy of the al-
gorithm considering the variation of all the pose pa-
rameters. The reference locations are represented by
a vector of the six position and orientation parame-
ters [tx, ty, tz, θ, ϕ, φ], uniformly distributed over the
following intervals of values:

4 cm, 16 cm fortx;
5 cm, 20 cm forty;
20 cm, 80 cm fortz;
20◦, 40◦ for θ;
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Fig. 5. Pose estimation errors depending on the ratio distance to camera-object size. (a) Translation error: (- - -)tx component of the
translation vector; (·-·-·-) ty component of the translation vector; (—)tz component of the translation vector. (b) Orientation error: (—)θ

angle; (·-·-·-) ϕ angle; (- - -)φ angle.

30◦, 50◦ for ϕ;
40◦, 60◦ for φ.

Seven hundred and twenty nine different situations
has been generated and the mean errorei relative to
each componenti is: [ etx ety etz eθ eϕ eφ ] =
[ 0.0343 cm 0.0553 cm 0.2036 cm 0.1231◦
0.5383◦ 0.4980◦]. The good results obtained in this
section allowed us to test POSIT method in a practi-
cal application. In the next section we describe how
we have optimized the method in order to use it in
the experimental context of autonomous navigation
of a mobile mini robot.

3. Optimization of POSIT algorithm in a mobile
robotic indoor navigation context

Considering the specific requirements of the mobile
robot navigation domain and the significant lens dis-
tortion caused by the uncalibrated camera mounted on
the Khepera robot, a new formulation of POSIT algo-
rithm has been developed.

The low performance of the original POSIT al-
gorithm using uncalibrated real images is due to
the camera perspective approximation on which this
algorithm is based. To overcome this problem, we
have introduced a new definition of the SOP scaling

factor. On the other hand, the bounded workspace
limits the robot movements control in the autonomous
navigation. We have modified the formulation of
the translation vector of the original algorithm, ob-
taining the rotation–translation sequence instead of
the translation–rotation one, in order to position the
robot in the environment from any point in any goal
position.

3.1. Pose recovery with uncalibrated real images

Eq. (15)is valid for a camera perspective approxi-
mation, on the basis of the theoretical hypotheses of
the POSIT algorithm, but, in the case of uncalibrated
real images, this assumption is not valid; in fact, the
poor quality of the camera mounted on the Khepera
robot causes a large distortion in the image plane.

The use of a single scaling factor in the definition of
the translation vector is valid only if the image plane
has no distortion. Normally, the problem of lens dis-
tortion can be solved by camera calibration[24,29,30]
but this causes image preprocessing and high compu-
tational cost. The idea on the base of the new version
of the method is to use different scaling factors in the
definition of the translation vector.

The three scaling factors1, s2, and s, defined in
Section 2.1, all converge to a single value on syn-
thetic data obtained by simulating an image plane,
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since there is not lens distortion. This does not happen
in the real case.

Since the scaling factorss1 ands2 are defined from
the normalization of the unit vectors of the image
plane, it is possible to use these scaling factors obtain-
ing a ‘scaling factor vector’sV. In this case the new
translation vector is

T =




x0

sx
y0

sy

f

sz



, (17)

wheresV = [ sx sy sz ] = [ s1 s2 s ].
Using this method we have obtained better results

with respect to the original method, as will be shown
in Section 4.

3.2. Pose control for autonomous robot navigation
in a bounded workspace

Since the workspace dimensions are limited, we
have modified the original version of the algorithm in
order to obtain the rotation–translation sequence in-
stead of the translation–rotation one. This allows a
better control of the robot position.

Given two frames 1 and 2, the rotation matrix that
represents the orientation of the frame 2 with respect
to frame 1 is denoted byR12. The location of the origin
of the frame 2 with respect to the frame 1 is denoted
by the vectorT12. If we are givenP2, (the coordinates
of the point relative to the frame 2) we obtain the
coordinates of the point with respect to the frame 1
(P1) by applying the coordinate transformation rule:

P1 = R12P2 + T12. (18)

Eq. (18) is used for the translation–rotation se-
quence in the original POSIT algorithm. Unfortu-
nately, the application of this sequence can cause the
robot to move out of the environment bounds. To get
over this problem, we have used a new equation to
obtain a rotation–translation sequence:

P1 = R12(P2 + T12) = R12P2 + R12T12

= R12P2 + T′
12. (19)

In order to obtain the real translation vectorT12 we
have applied the following equation:

T12 = R−1
12 T′

12. (20)

Using the new formulation of the translation vector
the robot is able to reach a goal position in a bounded
indoor workspace as will be shown inSection 5.

4. Evaluation of the method using real images

The goal of the test described in this section is to
confirm the applicability of the POSIT algorithm and
of its new version in a real-time application using
a Khepera miniaturized robot. A color CCD camera
(PC-215 PAL) has been mounted on it. The target ob-
ject is made up of two black regions: a ‘door’ region
and a ‘small area’ region. The black door-area region
is in a white closed environment as shown inFig. 6.

The method finds the rotation matrix and the trans-
lation vector of the robot coordinate frame with re-
spect to the object coordinate frame of reference. The
reference point of the target is the door corner repre-
sented with a white cross marker (+) in Fig. 6; the
y-direction is along the intersection between the door
plane and the floor; thez-direction is along the nor-
mal to the door plane. This robot has only three de-
grees of freedom: it can move only in thez–y plane
and can rotate around its vertical axis. According to
this, we have defined three position parameters:φ, the
rotation angle between the optical axis andz-axis;Ty,
the distance between the current position and the ref-
erence point along they-axis;Tz, the distance between
the current position and the reference point along the
z-axis.

The poor quality of the camera mounted on the robot
causes a significant lens distortion in the image plane.
For this reason we have modified the original version
of the POSIT algorithm as described inSection 3.1.
In this case only they component of the transla-
tion vector has a new formulation in the modified
version.

For the validation of the final results we have col-
lected different data set uniformly distributed on the
workspace, as shown inFig. 7. The camera orientation
is set so that the whole target is in the field of view
of the camera. For any point we have carried out 500
measures.
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Fig. 6. Bounded workspace made up of a black door-area target in a white environment and the Khepera robot used in our real-time
application.

Fig. 8 shows the comparison between the original
version of the POSIT algorithm and its modified ver-
sion in terms of the median error and the standard de-
viation of they component of the translation vector.
These values have been evaluated on the sample of 500
measures for each point. InFig. 8, for each method,
three graphics corresponding to the median value and
to the extremes of the interval determined by the corre-
sponding standard deviation are drawn: the latter two
graphics mostly overlap the one of the median error,
showing the robustness of the algorithms, since the
standard deviation of the error for both methods is
very small. It is possible to notice the improvement of
the modified version with respect to the original algo-
rithm by comparing the median values.

This improvement is much more evident by analyz-
ing the comparison between the meanemy, the integral
eiy and the standard deviationσy of the median error
values of they component evaluated on the whole set
of points on the workspace calculated for the POSIT

algorithm and its modified version as shown inTable 2.
Notice that the error values and the standard deviation
relative to the POSIT algorithm are worse than those
relative to the modified POSIT.

For the sake of completeness the same error analysis
has been carried out on thez component and theφ
component, too, by using the same real image.Fig. 9
shows the obtained plots respectively.

The averageem, the integralei and the standard de-
viation σ of these errors are shown inTable 3. It is
possible to compare these results with the ones ob-

Table 2
Comparison between the meanemy, the integraleiy and the stan-
dard deviationσy of the median error values of they component
for each point for the POSIT algorithm and its modified version

eiy (cm) emy (cm) σy (cm)

POSIT 55.006 2.292 1.398
Modified POSIT 26.143 1.089 1.302
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Fig. 7. Map of data set.

Fig. 8. Comparison between the error of they component of the translation vector for the POSIT algorithm and its modified version: (—)
median value of the POSIT algorithm; (—) median+ standard deviation value of the POSIT algorithm; (—) median− standard deviation
value of the POSIT algorithm. (-·-·-) median value of the modified POSIT algorithm; (·-·-·-) median+ standard deviation value of the
modified POSIT algorithm; (-·-·-) median− standard deviation value of the modified POSIT algorithm.
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Fig. 9. Pose estimation errors. (a)z component of the translation error vector: (—) median value; (—) median+ standard deviation value;
(—) median− standard deviation value. (b)φ component of the orientation error: (—) median value; (—) median+ standard deviation
value; (—) median− standard deviation value.

Table 3
Mean em, integral ei and the standard deviationσ of the z com-
ponent and theφ component of the pose estimation error

ei em σ

φ component (◦) 64.8692 2.7029 1.4974
z component (cm) 39.3541 1.6398 1.5685

tained inSection 2.2, even though different 3D object
models have been used. The mean error relative to the
componentsz andφ obtained by using real images is
worse than that obtained by using synthetic images.

Actually thanks to the results obtained with uncali-
brated real images, we have utilized the pose estima-
tion method in a practical application of autonomous
robot navigation in a closed environment. Since the
workspace dimensions are limited we have modified
the algorithm as described inSection 3.2. The appli-
cation ofEq. (20)modifies the translation vector ob-
tained by the version of POSIT algorithm discussed
above. InTable 4the averageem, the integralei and
the standard deviationσi of the error relative to the

Table 4
Comparison between the meanem, the integralei and the standard deviationσi of the new translation vector for the POSIT algorithm and
its modified version

eiz (cm) emz (cm) σz (cm) eiy (cm) emy (cm) σy (cm)

POSIT 32.212 1.342 0.352 85.415 3.559 3.291
Modified POSIT 41.949 1.748 1.628 59.918 2.497 2.197

new translation vector for the POSIT algorithm and
its modified version are shown. They component of
the new translation vector in the modified version of
the POSIT algorithm still shows good performances.
Instead thez component performances get a bit worse.
On the other hand, this new formulation of the transla-
tion vector is necessary in the considered application
of autonomous robot navigation due to the limitation
of the workspace and the peculiarity of the mini robot
Khepera.

We have finally inserted the modified version of the
POSIT algorithm in a visual servoing control system.
The robot task is to reach the goal pose with the desired
precision after few iterations, as it is shown in the next
section.

5. Control system

The last version of the POSIT algorithm has been
used in a practical application of autonomous robot
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Fig. 10. Scheme of the developed visual servoing control system.

navigation for reaching a predefined position in the
environment.

For this application, we have inserted the algorithm
in a closed loop control system which allows to obtain
a good performance in spite of the poor quality of the
camera mounted on the robot. The developed control
system is made up of two closed loops, as shown in
Fig. 10.

The inner loop is necessary to drive the vehicle un-
til the whole target appears in the field of view of
the camera (this process produces the rotation and the
translation of the camera–robot joint system). Once
the desired and the current camera pose are available,
the camera displacement to reach the desired position
is computed and the control of the robot is performed
in the principal closed loop.

In the screen output of the control system (see
Fig. 11) the toolbar for the robot movement control,
the current image displayed, the results of the devel-
oped feature extraction algorithm, and the output data
pertaining to the extracted features and the computed
robot pose parameters are shown.

The feature extraction algorithm has been developed
in few steps: the first one consists in applying a thresh-
old to the gray level input image. The image is thus
transformed in a binary image where the door-area tar-
get is black and the environment is white. This binary
image is further processed in order to separate the door

region from the small area region, using the informa-
tion about the door being the biggest region extending
around the image barycentre. The door region is lim-
ited by an over-estimation of the standard deviation
relative to the distribution of black pixels in the current
image. Outside the limited region of the door, all the
black pixels belong to the blue small area region. In
the next step we have found the four sides of the door
region in order to obtain four distinct point sequences.
For each of these loci, the method of the regression
lines has been used to compute the slope and the
vertical intercept, identifying the corresponding lines.
The intersection points of these four lines determine
the feature points corresponding to the door corners.
Since a necessary condition for the POSIT algorithm
is the extraction of features corresponding to at least
four non-coplanar object points, it has been necessary
to use at least another feature point non-coplanar with
the ones on the door. The corners of the small area
has been used for this aim. This feature extraction is
based on geometric considerations because the shape
is quite different from the one of the door. The com-
putation of small area corners uses the door features
just extracted and the relative distances from the cor-
ners of the image. The combination of these two fea-
ture extraction techniques provides six non-coplanar
feature points with an error not greater than two
pixels.
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Fig. 11. Output screen of the control system.

For the validation of the autonomous robot position-
ing two series of tests have been planned and executed.
In the former, we have evaluated the convergence
neighbourhood in a fixed goal pose starting from a
large set of points in the environment. The map of the
starting points (Fig. 7) and the correspondent camera
orientations are the same used inSection 4. Point 6 is
the goal point having the following pose parameters:

[φ, y, z] = [0◦,7 cm,40 cm].

For each final pose, the camera orientation, defined
by φ parameter, is represented inFig. 12 by the line
inclination with respect to thez- (horizontal) axis. The
black points and the correspondent labels represent the
final and the starting points, respectively.

Fig. 12shows that the convergence neighbourhood
in the goal position is smaller than 1.5 cm in diameter

and the difference between the current and the desired
camera attitude is less than 5◦.

An example of the application of the control sys-
tem is shown inFig. 13. In each frame of the se-
quence can be observed the white environment, the
black door-area target, the black point marker repre-
senting the goal position, the Khepera robot and a
white pointer on it indicating its heading.

In the first step (Fig. 13(a)) Khepera, from a generic
point in the environment, automatically position the
camera to obtain six exact feature points in the image
plane. This is realized using an internal control loop,
as shown inFig. 10.

The next step is to retrieve the robot pose using
the modified version of the POSIT algorithm. Once
the current robot pose [φ, Ty, Tz] is available, the
robot displacement to reach the goal [φg, Tyg, Tzg]
can be easily computed. Since the algorithm gives the
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Fig. 12. Convergence neighbourhood in a fixed goal pose starting from any point in the environment.

rotation–translation sequence, the rotation command
is executed before the translation one.

Khepera rotates an angleφ to steer itself along the
z-axis (Fig. 13(b)). Then, it moves along thez-axis
for a distance equal to (Tz − Tzg) (Fig. 13(c)); it ro-
tates 90◦ (Fig. 13(d)) to move subsequently along the
y-axis for a distance equal to (Ty − Tyg) (Fig. 13(e)).
Finally, it rotates to retrieve the goal attitude (Fig.
13(f)).

It then reapplies the POSIT algorithm to obtain an
estimation of the just reached position. If this pose is
different from the desired one, the robot repeats the
previous steps (Fig. 13(g)–(i)).

In the final test we have evaluated the convergence
neighbourhood in any point in the environment starting
from a fixed pose.

The map of the goal points (Fig. 7) and the cor-
respondent camera orientations are the same used in
Section 4. Point 6 is the starting point.

If we indicate with [eφ, ey, ez] the difference be-
tween the final and the desired goal pose, it is possible
to notice inTable 5that the convergence neighbour-
hood is about 1.5 cm diameter, the difference between
the current and the goal camera attitude is less than 5◦
and the number of iterations is less than 3.

Table 5
Difference between the final and the desired goal pose starting
from a fixed point

Goal point eφ (◦) ey (cm) ez (cm) Number of iterations

1 5.5 1.6 1.0 2
2 1.9 0.5 0.9 2
3 0.5 0.6 0.9 1
4 0.1 0.0 0.2 2
5 3.7 1.1 0.9 1
6 0.0 0.0 0.0 0
7 0.9 0.7 1.8 3
8 2.9 0.1 0.5 2
9 0.0 0.2 0.0 3

10 0.6 1.6 0.1 3
11 1.8 0.5 0.4 2
12 3.0 1.2 1.0 1
13 0.2 1.1 0.6 2
14 1.0 0.8 0.6 2
15 2.3 1.3 0.2 1
16 1.2 1.3 0.2 2
17 3.7 1.1 0.9 3
18 4.2 1.0 0.3 2
19 2.3 0.7 1.6 3
20 0.5 0.6 0.3 2
21 2.9 1.0 1.4 2
22 1.5 1.1 1.5 1
23 1.4 1.4 0.2 3
24 1.1 0.9 0.4 2
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Fig. 13. A sequence showing the Khepera being controlled using the proposed approach. The white pointer shows the heading of the
vehicle in each image.
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Analyzing the experimental results relative to the
robot position reaching, we can conclude that, start-
ing from any point in the environment, the robot is
able to reach any goal position, assuming any camera
attitude.

6. Conclusion

A new formulation of the POSIT camera pose re-
covery method has been implemented in the contest
of mobile robot indoor autonomous navigation. Due
to the specificity of the domain, certain modifications
were performed on the original formulation. We have
introduced a new formulation of the SOP scaling
factor to overcome the problem of low performance
due to the camera perspective approximation relative
to uncalibrated real images. Moreover, the bounded
workspace limits the robot movements control in the
autonomous navigation. For this reason, we have mod-
ified the formulation of the translation vector in the
original algorithm, obtaining the rotation–translation
sequence instead of the translation–rotation one.

After preliminary tests to validate the method using
synthetic data, we have tested the new version with
uncalibrated real images. The results show that these
modifications considerably improve the performances
of the original method.

Finally, an application of a visual-based control sys-
tem for the autonomous positioning of a mobile robot
with respect to a predefined target has been presented.

The developed system is able, starting from any
point in the working space, to drive the vehicle until
the whole target appears in the field of view of the
camera, to extract and match the feature points to the
known geometric model of the target, to calculate the
current position of the robot using the modified ver-
sion of the POSIT algorithm and to reach, using a
closed loop control, the desired position after few it-
erations. The described method can be used even in
the case of uncalibrated camera. We have applied two
different closed loops: one to obtain the entire visual-
ization of the target in the field of view of the camera
and the other to reach a better positioning of the mo-
bile robot. The method has proved to be effective in
autonomous positioning during real tests on a Khep-
era robot, in spite of the poor optical properties of the
camera mounted on the vehicle.
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