
Applied Soft Computing 1 (2001) 3–20

Invited paper

Adaptive robotics in entertainment

Henrik Hautop Lund∗
Maersk Mc-Kinney Moller Institute for Production Technology, University of Southern Denmark,

Campusvej 55, 5230 Odense M, Denmark

Accepted 26 March 2001

Abstract

Techniques developed in the fields of evolutionary computation, adaptive systems, agents, and artificial neural networks
can be used in entertainment robotics in order to provide easy access to the robot technology. We have developed a num-
ber of user-guided approaches based on the techniques from these research fields. These techniques include user-guided
behaviour-based systems, user-guided evolutionary robotics, user-guided co-evolutionary robotics, and morphological de-
velopment. All these techniques are applied to allow children to develop their own robot behaviours in a very easy and fast
manner. Here, I show examples with development of Khepera robots and LEGO MINDSTORMS robots, including the World
Cup’98 stadium, the Co-evolutionary Robot Soccer Show, the Toybot Soccer Player, the LEGO Interactive Football, and
RoboCup Junior Rescue. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Robotics; Entertainment; Edutainment; Behaviour-based robotics; Evolutionary robotics; LEGO; Co-evolution; User-guided
adaptive behaviour; Constructionism

1. Introduction

For the last 15 years, there has been a strong de-
velopment of adaptive robotics, starting from the in-
troduction of behaviour-based robotics by Brooks [3]
and the more popular description of such systems by
Braitenberg [2] (see also [4] for a review of the use of
behaviour-based systems for robot control, and [1] for
a thorough text book). There has been numerous ex-
amples of how to use artificial neural networks as robot
controllers [8,19], evolutionary computation for devel-
opment of the robot controllers [5,6,21], and different
kinds of behaviour-based systems for control [1,3].

∗ Tel.: +45-6550-3574;
fax: +45-6550-7697; URL: http://www.mip.sdu.dk/∼hhl.
E-mail address: hhl@mip.sdu.dk (H.H. Lund).

Most of these systems are supposed to adapt to the
environment, and often one can consider an adapta-
tion to the ecological niche (see [24]). The advances in
making adaptation have been considerable. However,
most often the robotic systems and the adaptation of
these are tested only on simple problems such as ob-
stacle avoidance, homing, line following, etc. which
is in line with Braitenberg’s [2] suggestions, but not
complex enough to attract the attention over longer
periods of time in an entertainment application or to
fulfil the goals of most industrial applications.

A second problem appears in the autonomous sys-
tems approach. Often, the goal is to achieve fully
autonomous robots, both in the development and the
behaviour. This is highly desirable from a theoretical
point of view and in some fully autonomous system
applications, but sometimes, in other applications,

1568-4946/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S1 5 6 8 -4 9 46 (01 )00002 -3



4 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

it may turn out to be less desirable. For instance,
in entertainment that involves construction, the user
would like to be able to direct the development of
the system, and in production systems, the worker in
a production hall should be able to re-configure the
robot for flexible production.

We have addressed these two issues regarding adap-
tive robotic systems by developing methods for achiev-
ing complex robot behaviours and for interaction with
the autonomous system. In the following, this develop-
ment is described through example implementations
of entertainment robots and user-guided approaches.
Essentially, all examples implement intelligent agents
in entertainment and edutainment.

2. Intelligent agents in entertainment

An intelligent agent can be defined as a system
with “intelligence” that performs actions or interac-
tions. Previously, such agents have been used in the
entertainment industry mainly in computer games for
achieving life-like behaviours [27,28]. For instance,
in a computer game an agent may be used as a char-
acter with whom the user is supposed to interact.
The agent may learn about the reactions of the user
in order to increase its skills and in this way better
challenge the user (as opposed to games where the
agent is static and not adapting through the user’s
interactions).

If we define the user as an agent, we can say that the
traditional use of intelligent agents has been a set-up
involving two intelligent agents, namely the user and
the computer game agent. I envision the modern use
of intelligent agents to broaden this use to physical
interactions with the artificial agent and the inter-

Table 1
Classification of interaction between intelligent agentsa

Number of intelligent agents Intelligent agent(s) Classification

1 Child Traditional
1 Animation Traditional
2 User, computer game Traditional
2 User, robot New
3 User, robot, computer game New
4 User, robot, computer game, intelligent room New

a It is possible to imagine a number of intelligent agents interacting with each other. Note that the human user is defined as an intelligent
agent in this classification.

play between more intelligent agents [9]. In order to
achieve physical interactions, it is necessary to move
the intelligent agent from the pure, virtual reality in
the computer to the physical reality. It is possible to
move the actions and interactions between a user and
a virtual, intelligent agent to a physical interaction
through haptic interfaces. Another possibility is to
make the complete transfer to the physical reality by
constructing robots for this purpose. Examples of such
robots are the SONY AIBO, LEGO MINDSTORMS
robots, I-Cybie, etc. These physical robots facilitate
interaction between two intelligent agents (user and
robot) in the physical world. Further, it is possible to
make interactions between three intelligent agents in
the form of user, robot, and computer game. LEGO
CyberMaster is an example that facilitates such a
set-up, where the physical robot is controlled from a
computer game, and the child can interact with the
physical robot in the physical world. Finally, we can
envision the interaction between four or more intelli-
gent agent by making an intelligent room, so that we
have the following intelligent agents to interact: user,
robot, computer agent, and intelligent room (Table 1).

There are significant differences in between the
different entertainment robots mentioned above. In
some cases, the robots are fully autonomous both in
development and behaviour (e.g. Furby) and so give
no possibility for development by the user, in some
cases there are limited possibilities for development
by the user (e.g. I-Cybie and AIBO), and in other
cases there are extensive possibilities for develop-
ment by the user (e.g. LEGO MINDSTORMS and
FischerTechnic robot). Here, I will concentrate on the
latter kind of entertainment robots, since I view these
systems to best facilitate an educational approach in
applications for children.



H.H. Lund / Applied Soft Computing 1 (2001) 3–20 5

Fig. 1. LEGO MINDSTORMS models including the Pacman game.

In order to investigate the possibilities of transfer-
ring the intelligent agent from the traditional use in
a computer game to the physical reality, we made
a number of initial experiments with LEGO MIND-
STORMS robots. They were displayed and used by
children during RoboCup’98 in Paris, and can be
viewed in Fig. 1. Especially the well-known computer
game from the early 1980s called Pacman was devel-
oped as a robot game. Pacman is the game where a
yellow cheese is controlled to move around in a maze
while being chased by a number of ghosts. In the
robot game, there would be two red ghost robots and
a yellow cheese robot moving around in a maze made
by attaching black adhesive tape on a white floor (a
white plastic table cloth). All three robots were pro-
grammed using the behaviour-based approach. In the
behaviour-based approach, the robot programmer first
designs a low level of competence, implements and
debugs this level. When this level is fully functional,
the programmer can start adding new levels of com-
petence one on top of each other. In the case of the
Pacman game, the robots had to be programmed to
have the following competencies: avoid lines, avoid
when colliding, move forward, and turn in junctions.
These behaviours would allow the robots to move
around in the maze. By adding an extra layer, one
could design a goal-directed behaviour. In this way,
it was possible to design a fully autonomous display
of three robots moving around in the maze. However,
a fully autonomous Pacman game would be no fun
for the children. So an extra layer of competence was
introduced in the yellow cheese robot, namely the
goal-directed behaviour through interaction by the

child user. A joystick was made out of LEGO MIND-
STORMS, and the commands received by the yellow
cheese robot through infra-red communication from
the joystick would enter as high-level commands in
the behaviour-based system. In this way, the user
would be able to direct the behaviour of the (no longer
fully autonomous) robot, and try to direct it to the
centre of the maze (the goal position) while avoiding
being hunted down by the two red ghost robots, i.e.
the two fully autonomous robots. Apart from fulfilling
the goal of providing a fun and interesting physical
robot game, the approach showed one of the advan-
tages of the behaviour-based approach, namely the
division into behaviours and the construction of layer
after layer. It was comparably simple to add new lay-
ers of competencies in order to provide the necessary
behaviours and to allow the interaction between the
two intelligent agents: the child and the robot.

The success of the Pacman game prompted us to
use similar approaches in other applications such as
the fashion show (see Fig. 2), the artist robots (see
Fig. 3), and the musician robots (see Fig. 4). The fash-
ion robots make a catwalk and numerous robot mod-
els show different designed dresses. The artist robot

Fig. 2. A fashion robot for catwalk.



6 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

Fig. 3. An artist robot.

Fig. 4. The robot orchestra with musicians and conductor.

set-up is based on four autonomous robots painting
on a canvas on the floor. They can either paint with a
paintbrush, a pen, spray paint, or splash paint. The four
robots are programmed with a similar behaviour-based
approach as in the Pacman game, so that they all have
different levels of competencies. A human artist is
provided with the joystick and can select which of
the four robots to interact with at a given time — the
three other robot artists will be moving around fully
autonomous. In this way, the human artist can inter-
act with the autonomous multi-robot system, and di-
rect the behaviours so as to influence the outcome: a
human-robot designed work of art.

The orchestra composed of musician robots is an-
other example of a multi-robot system where an intel-
ligent agent tries to direct the behaviour of the other
agents. Here, the single robot plays an instrument such
as drums, xylophone, and string instrument. The robot
orchestra played the Johann Strauss “An der schönen
blauen Donau”. We can describe a real orchestra as
being nice if it is composed of good individual mu-
sicians, but it is also crucial that these musicians can
co-ordinate their performance. The same is true for
a robot orchestra. Since the robots are autonomous
agents, they all play with their own timing, and so
there is the risk that they may get out of beat. As
known from real orchestras, a conductor can ensure
that the individual intelligent agents (musicians) keep
the beat by providing an external signal for the beat.
Hence, a robot conductor was constructed, and this
robot conductor provides the beat through infra-red
communication, so that the individual autonomous
robot musicians will adjust to the beat when they
receive it. However, infra-red communication is of-
ten unreliable, so it is important that the robots are
autonomous, so that they will perform even when the
signal is not received. All that happens when missing
a signal is that the robot will adjust to the beat only
slightly later (e.g. 1 s later) when it receives the next
signal from the conductor. This is one of the many
advantages of behaviour-based systems: behaviours
run in parallel and low level behaviours still work
when higher level behaviours do not.

3. Soccer World Cup’98 demonstration

Another use of behaviour-based robotics in en-
tertainment is for robot soccer. Before the LEGO



H.H. Lund / Applied Soft Computing 1 (2001) 3–20 7

Fig. 5. The LEGO robot soccer set-up. There is one goalkeeper and two field players on each team (one red and one blue team). The
stadium has light towers, scanning cameras that project images to large monitors, scoreboard, rolling commercials, and almost 1500 small
LEGO spectators that make the “Mexican wave”. Copyright H.H. Lund, 1998.

MINDSTORMS Robotic Invention System was to be
released on market, we wanted to make a large-scale
test of the robot kit. We selected to make a LEGO
MINDSTORMS robot soccer game with a distributed
behaviour-based system to be demonstrated in Paris
during the soccer World Cup’98 (France). Robot soc-
cer has been defined as a new landmark project for
artificial intelligence, and its characteristics fitted our
purpose. In contrast to previous artificial intelligence
challenges such as computer chess, robot soccer is a
dynamic and physical game, where real time control
is essential. Further, where a game like chess might
allow extensive use of symbolic representation, robot
control puts emphasis on embodiment and many
aspects of this prohibits the use of symbolic repre-
sentation. In general, participating in robot soccer
is believed to provide both students and researchers
with knowledge about the importance of embodiment
and the problems that ungrounded abstractions might
lead to [14] (Fig. 5).

However, we also found a number of problems
that had to be solved before robot soccer could be
made appealing for a public audience. Robot soccer
is a very young research field, so the performance
of the robot soccer players might not look especially
impressive from a public audience’s point of view.

Even though, we expected a huge public interest in
our LEGO MINDSTORMS robot soccer demonstra-
tion (indeed, our LEGO MINDSTORMS robot soc-
cer demonstration was broadcasted to an estimated
200–250 million television viewers world-wide), so
it was important to alleviate this problem. The robot
game had to be put into the right context. From an
aesthetic point of view, other robot soccer players
might be looked at as essentially cubic, metallic de-
vices that move around in a pen and push a ball — it
might not appear to be much like soccer to the public
audience if the audience is not told in advance to look
at this as soccer. Therefore, in our robot soccer game,
we put much more emphasis on making a context
that immediately would allow the public audience to
recognise the game to be a soccer game.

This was done by making a whole stadium (which
we named Stade de Victor LEGO) out of LEGO with
light towers, rolling commercials, and almost 1500
LEGO spectators who made the “wave”, by providing
sounds related to the game (tackling, kicking, specta-
tor noise, etc.), and by giving the robot soccer play-
ers a face (for further details, see [11,15]). Indeed,
in the developing phase, we had a graphical designer
to make huge colour drawings of possible scenarios,
we had a technical designer to make appealing facial



8 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

Fig. 6. A LEGO robot soccer player. Copyright H.H. Lund, 1998.

expression of the robots, and we made different scripts
for games (how to enter the field, how to sing the na-
tional anthems, how to get into the kick off positions,
what play strategies to use, etc.).

In the design of LEGO MINDSTORMS robot soc-
cer players, we used three rotation sensors: two sensors
to give information about the movement of the wheels,
and one sensor to give information about the move-
ment of the mouth (see Fig. 6). Two independent mo-
tors were used to drive the two wheels, and one motor
was used to allow the mouth to open and close (to make
the robot “shout” or “sing”). When opening the mouth,
a small bar on the back of the robot would move down
on the ground, which made the robot tip slightly for-
ward. This was made in order to make a shout look
even more lively. However, the functionality turned out
to provide a nice, unintentional use. The border of the
field had a chamfered edge to allow the ball not get-
ting stuck up against the wall. However, because of the
slight slope, the robot soccer players could get stuck at
the edge, since the distance between the wheels touch
point on the ground and the base of the robot was
quite small. The problem was solved by allowing the
robot soccer player to scream after being stuck for a
short time. Apart from opening the mouth, this would

make the bar on the back go down on the ground and
tip the robot, so that it would actually get free.

In order to detect the position of the individual
players and the ball, we used an overhead camera
and processed the input in a hardware vision system
connected to a host computer. The LEGO MIND-
STORMS robot soccer players were programmed
using the MINDSTORMS OCX together with
Microsoft Visual Basic. The control system was a
distributed system between the robots and the host
computer. The host computer ran a program that col-
lected co-ordinates from the hardware vision system,
processed this information and sent angles to turn out
via the infra-red transmitters. The robots had a control
system that allowed them to collect the appropriate
data, and react accordingly. We implemented a kind
of behaviour-based control where some competencies
are placed on the robot, while other higher levels of
competence are placed on the host computer.

It is essential that low level primitives, such as the
control of motors and sensors are placed directly on
the robot. In order to ensure precise control, the in-
put channels should be used to obtain feedback as of-
ten as possible. Control from a host computer of low
level primitives such as turning a specific angle is very



H.H. Lund / Applied Soft Computing 1 (2001) 3–20 9

risky because infra-red communication might fail and
hence feedback from sensors is lost until communi-
cation is re-established. Imagine that we allow one of
the motors to turn until the angle sensor exceeds a spe-
cific threshold for turning the angle that we want the
robot to turn. When having this control on the robot,
we will be able to read the angle sensor at very short
intervals, and hence stop the turning immediately af-
ter the threshold is reached. On the other hand, if we
placed this low level control on the host computer, then
we would have to send the reading of the angle sen-
sor from the robot to the computer for each reading.
The time for doing this depends on the transmission
time for a message, but sometimes it might take even
longer because we have to retransmit when the pack-
age is not received. Afterwards, the command to stop
the motor when a value larger than the threshold was
received has to be sent back to the RCX. Because of
the long time delay, the robot will no longer turn the
desired angle (or very close to the desired angle), but
will turn a larger angle (and it will be larger the worse
the communication is). In total, the time between in-
put is received on the RCX until the motor command
is activated will be much longer than when control is
directly on the robot itself. Therefore, the control of
low level primitives should take place on the robot it-
self in a distributed behaviour-based system.

Essentially, we are defining the time step (or sam-
pling time interval) in the control system (note that
even though we might talk of a reactive behavioural
module, there will still be a time step defined by the
sampling rate). Some competencies will need a very
short time step in order to make appropriate control,
while other competencies can do with a longer time
step. Basically, we find that the necessary time step
decreases in length as we go from higher levels of
competence to lower levels of competence. Based on
an analysis of the necessary time step together with
an analysis of communication time between the dif-
ferent distributed units in the system, we can identify
the distribution of competencies in the different com-
putational units (in this case, in the host computer and
the robots).

The analysis showed that the competencies for mov-
ing forward and turning specific angles should be im-
plemented directly on the robot. Other higher level
competencies were implemented on the host computer.
These higher level competencies include an action de-

Table 2
The distributed behaviour-based control system of the LEGO robot
soccer players

Behaviour Level Computational unit

Position planner High level Host computer
Angle selection High level Host computer
Turn (and scream) Low level Robot
Forward Low level Robot
Stop and wait Low level Robot

cision mechanism that selects what angle to send to the
robot, and, on top of this competence, a planner that
decides where to have the robot to move in the field.
The total of five (another classification might result
in only four competencies, since turn and angle selec-
tion might be classified as just one competence, but
since they are placed in each their component of the
distributed system, we classify them as two competen-
cies) competencies in the distributed behaviour-based
system is shown in Table 2.

The simplest competence in the distributed
behaviour-based control system is simply stop and
wait, which is implemented in the robot. This control
will simply make the robot stand still. One level up, a
move forward command can overwrite (or subsume)
the ‘stop and wait’ for a specific amount of time. The
time of this subsumption was found with empirical
tests. It allows the robot soccer player to move forward
approximately 15 cm. With these two basic layers of
competencies, the robot will move forward, stop and
wait, and then again move forward, and so on. The
third layer, which is also implemented in the robot, is
the turn competence. It reads a robot specific (it has its
own ID) register and turns the amount of degrees that
is read in the register, if the value in the register has
changed. Afterwards, it resets the value in the register
to zero. A specific value in the register will trigger the
scream behaviour (open and close mouth before turn-
ing). Hence, this third layer subsumes the two lower
levels for the time that it takes the robot to turn, i.e. if
a non-zero value is read in the register, the robot will
turn, and when the turning movement has finished,
the forward movement might be issued again, so in a
total the robot will turn and then move forward. As
mentioned above, it is essential that these low level
competencies of the distributed behaviour-based sys-
tem are implemented directly on the robot. (Further, in



10 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

Fig. 7. Schematic view of the distributed behaviour-based control system of the LEGO MINDSTORMS robot soccer. The rectangles
represent behavioural modules. A module on a higher level can subsume a module on a lower level. From below, each level is functional
without the upper levels. Hence, the robot is functional with only level 0, with only level 0 + level 1, with only level 0 + level 1 + level
2, etc. The grey lines represent control commands to the motors. Control commands are sent by the behavioural modules, and can be
overwritten by commands from higher levels (e.g. a motor command from the ‘forward’ module can overwrite the motor command from
the ‘stop and wait’ module). A black line arriving from an upper level to a horizontal line might overwrite the information that is being
sent on the horizontal line. For example, the implementation of level 4 (‘action planner’) will give an output that will overwrite the output
from the ‘default behaviour’ module in level 3, and therefore the robot will take the action decided in the ‘action planner’ rather than the
‘default behaviour’. Copyright H.H. Lund and L. Pagliarini, 1999.

order for the robot to turn the exact degree found in its
register, extensive empirical measurements were used
to estimate the relationship between reading of angle
sensor and degree of turn. This information was then
used in robot-individual look-up tables, very similar
to the approach for estimating motor characteristics
suggested by Miglino et al. [18].)

The higher level competencies of the distributed
behaviour-based system were implemented on the
host computer (see Fig. 7). First there is an angle
selection competence that calculates the angle
between two vectors and communicate it via the infra-
red communication towers. The two vectors represent
the robot’s previous movement, and the line between
the robot’s position and the desired position (where
the robot should move to). We implemented a default
position that each robot soccer player had to go to.

As default, the blue players had to go to each their
side of their own team’s defence zone (they were
supposed to be wing-backs), while the red players, as
default, were supposed to go to the ball (they were
more aggressive like forwards).

The highest level of competence in the distributed
behaviour-based system is a position planner that de-
cides the strategy of the single player, i.e. where the
robots should move. This level subsumes the part of
the angle selection competence that makes the single
robot move with the default behaviour. In the LEGO
MINDSTORMS robot soccer demonstration that we
showed in Paris, this competence provided the robot
soccer players with fairly simple strategies. It allowed
the red players to play a central, attack friendly game,
and the blue players to play a more defence-like game.
Essentially, the red player closest to the ball would



H.H. Lund / Applied Soft Computing 1 (2001) 3–20 11

move towards the ball and the other red player would
place itself approximately 50 cm behind the ball (and
the other red player). If a red player was in very close
proximity to the ball (e.g. touching the ball or just be-
hind it), it would move towards the opponent goal, and
by this trying to score a goal. The blue players would
move around in each their side of their defence zone,
but if the ball was in their own side of the field (in front
of themselves), they would move forward to kick it
forward towards the opponent goal. In this sense, the
red players played an attacking, forward game, while
the blue players played a more defensive, wing-back
game. The game the two teams played, as far as we
could observe it, was quite balanced and therefore each
competition had a fairly unpredictable result.

In total, the behaviour-based control system gave
a robot soccer play that allowed the robots to play
a good robot soccer game, where goals were scored
in most periods. In the demonstration tournament, we
played games with five periods of up to 2 min (or
until a goal was scored), and on an average three to
four goals were scored in each match. This is higher
average of goals/period than in most other robot soccer
games, and it was essential for us to achieve this good
performance in order to provide a spectacular game
for the public audience (Figs. 8–10).

Certainly, the strategy of the game can be im-
proved. For the demonstration tournament, our main
objective was to make a lively game and ensure a
convincing performance of the robots. We used most
of the development time on designing the distributed
behaviour-based approach, on ensuring fast and reli-
able vision tracking and communication. We did not

Fig. 8. The LEGO robot soccer World Cup’98 game.

Fig. 9. Another figure of the robot soccer game.

use much time on implementing different strategies
for the single robot soccer players. However, this is
where the distributed behaviour-based system is at its
strongest. The implementation of new strategies can
be done in very short time indeed, since all that has to
be changed is the highest competence level, namely
the action planner. Since this is a simple subsump-
tion system, everything from the lower levels can be
re-used (and most of it should be re-used). A few
lines of code (in the order of 5–10 lines of code) will
change the behavioural strategy of a robot (with the
same hardware structure) totally, e.g. from having an
attacking behaviour to having a midfield behaviour.

Further, we can imagine an interesting higher layer
of competence being implemented in a simple way
on top of the other layers. This layer would be a team
play competence, which makes the players move
around and pass the ball in accordance of the po-
sition of the other players (team players as well as

Fig. 10. The 1500 LEGO spectators make the ‘Mexican wave’.



12 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

opponents). This layer could be implemented in the
host computer on top of the action planner. In a sense,
the new layer would act as a coach who directs all the
independent players in a team to have a co-ordinated
game of soccer.

However, simple that we might find it to add
higher levels of competence to the distributed
behaviour-based system, it must be noted that we
inherit the problem of “level design” from the sub-
sumption architecture. The design of higher levels of
competence is critically dependent on the design and
implementation of lower levels of competence. We
have not solved this problem by going to a distributed
system. I believe that this problem is one of the rea-
sons why Brooks [4] finds that only few experiments
with behaviour-based robotic systems have achieved
high complexity or high level of performance. On
the other hand, with the distributed behaviour-based
system, we were able to make a very well performing
and robust behaviour-based system with many levels
of competence. In the few cases of success, it seems
valid to ask whether the success of behaviour-based
systems is due to the design paradigm or due to com-
petent engineers. Regardless of the advances that we
have made in this example, in my point of view, this
still remains an open question.

4. Interactive LEGO football for RoboCup Junior

Though the robot soccer system was a nice demon-
stration, there was the drawback that it did not allow
the interaction by the users. This is a major draw-
back when we are concerned with children learning
by getting hands-on experience. Indeed, there may be
a conflict between much modern research on devel-
oping autonomous systems, and the educational re-
search putting emphasis on interaction, e.g. in guided
constructionism [10]. Also, classical constructionism
with its roots in the work by J. Piaget suggests that
the best way to learn about an artefact is to actually
build the artefact. Another issue to be solved was that
the set-up with an overhead camera was complicated,
and so is not feasible for schoolteachers to set up.

Therefore, for the RoboCup Junior during Robo-
Cup’99 in Stockholm, I developed another well func-
tioning LEGO MINDSTORMS robot soccer game
together with L. Pagliarini. The use of overhead cam-

era was avoided by making a special transparent ball
with infra-red transmitters of approximately the same
wavelength as the detectors in the LEGO MIND-
STORMS light sensors. This facilitated the perception
of the ball, while the recognition of position in the field
was facilitated by colour (grey) codes on the floor.

The aim of our RoboCup Junior game was to allow
children to get hands-on experience with robotics, and
for this purpose we set up a LEGO MINDSTORMS
robot soccer game for children. We developed the
user-guided behaviour-based approach [16] in or-
der to allow non-expert users to develop their own
robots in an easy and fast manner. Indeed, using this
approach, children of the age 7–14 were able to de-
velop their own LEGO MINDSTORMS robot soccer
players to play in nice and friendly tournaments with
60–90 min of development time! In a user-guided
behaviour-based system, it is the system developer
who takes care of the difficult robotic problems, while
the end-user is working on a higher abstraction level
by making the co-ordination of primitive behaviours.

As mentioned, the programming environment for
the LEGO MINDSTORMS RoboCup Junior was
made with emphasis on allowing children (between 7
and 14 years of age) to develop their own robot soc-
cer players. We found the behaviour-based approach
to be an excellent inspiration for achieving this. Espe-
cially, we used the concepts of low and high levels of
competence, or primitive behaviours and arbitration.
We, as developers, provide the primitive behaviours
to the children, while they work (play) on a higher
level with the arbitration of the primitives. Hence,
the difficult task of designing low level primitives
that includes sensor interpretation is done a priori by
the programmer (so the children get to do the easier
and funny part of co-ordination rather than doing low
level programming). For instance, the interpretation
of analog values on the input channels is done in the
primitive behaviours, which might provide the user
with a behaviour such as ‘Find Ball’. The designer of
the system programs the motors to allow the robot to,
for example, turn around and stop when receiving val-
ues such as 637 and 655 on two of the input channels.
But the user is simply co-ordinating the primitive be-
haviours. This user-guided behaviour-based system is
described in further details in [16] (Fig. 11).

The user-guided behaviour-based system for
RoboCup Junior is called interactive LEGO football



H.H. Lund / Applied Soft Computing 1 (2001) 3–20 13

Fig. 11. The programming environment for LEGO MINDSTORMS RoboCup Junior. We used the behaviour-based approach, and developed
primitives (the behaviours on the left), and allowed the children to make higher level strategies using these primitives. With this system,
children from 7 to 14 years of age were able to develop their own robot footballers within 30–60 min. Copyright H.H. Lund and L.
Pagliarini, 1999.

(ILF), and has been used with great success at tourna-
ments during RoboCup’99, MindFest’99, RoboCup
EURO 2000, and numerous local events. Figs. 12
and 13 show children participating in the RoboCup
Junior game and the performance of the robots that
they have developed during maximum 1 h.

5. Breeding robotics

In the case of ILF, the easy development of these
robot behaviours is dependent on the available tool.
In the RoboCup Junior set-up, the children’s task was
facilitated by our programming environment, in which

children would co-ordinate primitive behaviours rather
than hand-coding complex behaviours from scratch.
However, one major drawback remains, namely that
the children have to be able to read in order to use
the system. Therefore, we have worked on developing
user-guided evolutionary robotics to fully avoid the
necessity to learn syntax and semantics of a program-
ming language before being able to develop robot be-
haviours. Essentially, we are exploring the concept of
development without programming by children, and
especially at the case of developing robot control sys-
tems, so this is a case study of breeding robotics. In
breeding robotics, the machines are products of the
interaction of the artificial evolutionary process and



14 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

Fig. 12. Some children playing with the LEGO robot soccer players
that they have developed with ILF within 60 min.

the breeders (in this case children) that try to help,
direct and select [13]. The evolutionary robotics ap-
proach has shown that in some cases, given a math-
ematically described fitness function, it is possible to
achieve an automatic development of robot controllers.
However, it is questionable how one is to construct
the mathematical fitness function. So together with
my colleagues, I applied an interactive genetic algo-

Fig. 13. The LEGO robot soccer player for ILF. We provide
building plans for making this robot in order to facilitate the
participation in the game. See LEGO robot soccer player building
instructions (http://www.mip.sdu.dk/∼hhl/RoboCupJr/Build/).

rithm to the problem of developing robot controllers
and achieved an evolutionary robotics approach that
allows children without any programming knowledge
to develop controllers for LEGO robots [14]. We used
neural networks as robot controllers, and found that
combining the interactive genetic algorithm with a
kind of reinforcement learning — development at the
evolutionary time scale combined with life-time devel-
opment — reduces the development time drastically.
Hence, we overcome one of the major drawbacks of
the interactive genetic algorithm, namely the develop-
ment time.

The general idea is a user-guided evolutionary
robotics approach by which children can develop
robot controllers in the simulator by choosing among
different robot behaviours that are shown on the
screen, and then, when they are satisfied with the
simulated robot’s behaviour, download the developed
control system to the real LEGO robot and further
play with it in the real environment.

The user-guided evolutionary robotics approach is
inspired by our previous work using interactive ge-
netic algorithms to evolve simulated robot controllers,
facial expressions and artistic images (see [23,26]).
In this approach, there is no need of programming
knowledge, since all the end-user has to provide is
a specification of preference of the solutions sug-
gested graphically on the screen. Hence, there is no
description of a fitness function, but the selection in
the genetic algorithm is performed by the user.

In order to use the user-guided evolutionary robotics
approach, it is necessary to simulate the robot in its
environment, make selective reproduction in the sim-
ulator, and then transfer to the physical robot. As de-
scribed in [12,18], it is possible to build an accurate
simulator that allows very good transfer from simula-
tion to reality by basing the simulator on the robot’s
own samplings of sensor and motor responses. The
disadvantage is that data has to be collected. In the
construction of the simulator, this data had to be col-
lected for the different sensors and different motor
configurations. For instance, we had to measure the
motor response for each individual LEGO robot de-
sign that we wanted to use in the simulator. This is the
disadvantage of the approach.

The sensor and motor data was collected in a simi-
lar way to that described in [12,18], and the collected
data was put into look-up tables that is used by the



H.H. Lund / Applied Soft Computing 1 (2001) 3–20 15

simulator to look up specific sensory readings and dis-
placements of the simulated LEGO robot.

Our first experiments showed that we could de-
velop simple robot behaviours such as obstacle avoid-
ance, line following, etc. for LEGO robots with the
user-guided evolutionary approach [14]. Here, chil-
dren chose a subset (three) of simulated robots in a
population (of nine simulated robots) to reproduce
generation after generation before downloading the
final result to the real LEGO robot. In order to show
the feasibility of the user-guided evolutionary robotics
approach, we wanted to test it with more complex
tasks such as the RoboCup Junior game. Hence, we
extended the approach to allow children to evolve
complex behaviours for the LEGO MINDSTORMS
robots. We call this implementation the Toybots
Breeder. Inspired by the successes of previous work
on evolvable behaviour-based systems [7] and the

Fig. 14. The Toybots simulator for the LEGO MINDSTORMS RoboCup Junior. Here, children can develop complex robot soccer behaviours
before downloading these behaviours to the real LEGO MINDSTORMS robot to be used in competitions. Copyright H.H. Lund, 1999.

user-guided behaviour-based system for the RoboCup
Junior [16], we decided these two approaches to be
the starting point of our user-guided evolutionary
robotics approach for allowing children to develop
complex behaviours.

Essentially, we use the primitive behaviours (e.g.
‘Go Forward’, ‘Find Ball’ and ‘Go Midfield’) that we
developed for the ILF program as the building blocks
in the genotype, and allow the interactive evolution to
develop the co-ordination of these behaviours. In the
simplest case, the co-ordination can be sequencing a
number of the primitive behaviours. In this case, in or-
der to build a simulator, we simulate each of the prim-
itive behaviours, and we simulate the ball movement
— using the simulation technique described above. As
before, we can now show a population of simulated
LEGO MINDSTORMS robots on the screen with the
simulation of the field and the ball, and allow the



16 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

children to select the ones that play the kind of soccer
that they are interested in, see Fig. 14. User tests in our
lab showed that children of 8 years of age were able
to develop robot soccer players and enjoy the game
with the Toybots Breeder.

There are a number of research issues that have to
be addressed in order to ensure feasible user-guided
evolutionary robotics. The most important issue is user
fatigue: how can we avoid demanding the user to se-
lect from a big population for numerous generations.
If the selection process becomes too long, the user
will experience fatigue. In our case, by using prim-
itive behaviours as the building blocks, we achieve
fairly fast evolution, which is essential when children
are involved. However, it is not given that the build-
ing blocks should necessarily be at this level. For the
simple behaviours such as obstacle avoidance and line
following, we used connection weights in a neural net-
work as the building blocks, but for the more complex
task of robot soccer we found it necessary to increase
the complexity of the building blocks to become prim-
itive behaviours.

6. Co-evolutionary Robot Soccer Show (CERSS)

The experiments with user-guided evolutionary
robotics for RoboCup Junior showed that indeed chil-
dren could use evolution to develop interesting robot
behaviours. Based on this experience, we decided to
develop an educational tool for teaching evolution,
and therefore developed the CERSS. CERSS aims at
explaining Darwinian evolution along with aspects
regarding technology (robotics) and modern artificial
intelligence. It is believed that the game might help in
understanding of the important biological concept of
Darwinian evolution, since it gives the user hands-on
experience with the concept, and hopefully makes
the concept less abstract for the user. Such hands-on
experiments are often impossible in “traditional”
biology classes (an exception might be work with
the fruit fly, Drosophila, which however is a very
long process), and is therefore believed to be an im-
portant supplement to the more traditional biology
classes.

The CERSS allows the user to get hands-on ex-
perience with the concepts of evolution, cross-over,
mutation, fitness, etc. by looking at how they influ-

ence the evolutionary process. This is done by setting
different parameters (e.g. selection pressure, mutation
rate, cross-over rate and fitness) and then allowing
the evolution to run and observe the outcome. After-
wards, one is encouraged to use the experience gained
from the first run to modify the parameters and run
other evolutionary experiments for obtaining the best
possible result.

As was the case with the Toybots Breeder, also the
CERSS is an instance of off-line evolutionary robotics,
in which the evolution takes place in simulation before
the result is transferred to the physical robot. In this
case, the physical robot is a Khepera miniature robot,
which is circular and measures 55 mm in diameter.
The robot has two independent motors connected to
small wheels (one on each side of the robot), and eight
infra-red sensors that can sense objects in a very short
distance. Further, the robot is equipped with a simple,
linear camera that can sense object 36◦ in front of the
robot in different grey levels. The controllers devel-
oped for playing soccer in the simulator can be down-
loaded to the physical Khepera robot that can then
play the soccer game in a physical arena with a yel-
low tennis ball and an opponent. For instance, down-
loading and physical games with the evolved robots
took place in Amsterdam during RoboCup European
Championships 2000.

In the CERSS, there are two populations (the red
population and the blue population) that compete
against each other, and who are dependent on each
other. This is known as co-evolutionary robotics (see
[20]). When one population of robots gets better (e.g.
scores more goals), the other gets worse (e.g. more
goals are scored against it). This is in some way
similar to the natural phenomenon of predators and
prey. If the predators start running faster, then the
prey must find a new strategy in order to survive. If
the prey switches to a new strategy, then the preda-
tor must find another, new strategy as well, in order
to catch the prey. And so the co-evolution can con-
tinue with one strategy after another. In our case, we
hope that the populations of robot soccer players can
use the co-evolution to find new robot soccer strate-
gies. The underlying controller to be developed is a
behaviour-based system where activation flows be-
tween layers in a hierarchical behaviour control (see
[22]). Comparison tests showed that the co-evolved
individuals were more robust in handling different



H.H. Lund / Applied Soft Computing 1 (2001) 3–20 17

Fig. 15. The entry for the Co-evolutionary Robot Soccer Show. The software can be downloaded for free at the website http://
legolab.daimi.au.dk/cerss/.

opponent strategies than individuals evolved with
traditional evolution (Fig. 15).

For each population in the co-evolutionary robotics
set-up, the user can set and experiment with a num-
ber of parameters such number of generations, elitism,
number of selected individuals, crossover rate, muta-
tion rate, and number of test steps. Further, the user
sets the fitness function deciding number of points for
scoring goals, number of (negative) points for scor-
ing own goals, number of points for being fast, etc.
The CERSS ran as an Internet competition, and ev-
eryday users would submit their best players to the
server, which would play them against each other ev-
ery night in almost 100,000 matches a night, in order
to generate the high score list in the morning. Also,

Fig. 16. Evolved Khepera robot soccer player. The red robot
is evolved in simulation and the controller is transferred to the
physical robot. The blue robot is hand-coded.

the best co-evolved robot controller from numerous
experiments was used in a Khepera robot that par-
ticipated in the Danish Championship in robot soc-
cer 1999, where the evolved robot won four matches
against robots that had been hand-coded. Eventually,
the evolved controller lost in the final of the champi-
onship (Fig. 16).

7. Context development

Based on the positive experience with the robot
soccer experiments, RoboCup has now developed a
full RoboCup Junior league. Before RoboCup 2000 in
Melbourne, almost 40 school classes used RoboCup
Junior as an activity either during school hours or
after. However, based on experience and interview
with teachers (see [25] for a report describing re-
sponse by teachers regarding the use of RoboCup
Junior), we have noticed an undesirable gender gap.
It turns out that most participants for the robot soc-
cer games are boys, probably because of the strong
use of “male-dominated concepts” such as technique,
soccer, cars, and competition.

Therefore, we introduced other games such as robot
dancing and RoboCup Junior Rescue that puts em-
phasis on combining technical skills with other skills,
putting things into the right context, co-operation and
performance (rather than competition). Indeed, for
the robot dancing, we experienced a much more equal
distribution of participants between the two genders
(Fig. 17).



18 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

Fig. 17. Robot Dance Performance made by children from
Australia during RoboCup Junior 2000. Here, the children de-
sign both the story line, the environment, the robot, etc. See
the RoboCup Junior Official Site (http://www.artificialia.com/
RoboCupJr/).

Indeed, the issue of putting things into the right
context is crucial in entertainment robotics. For in-
stance, the first robot soccer demonstration would
not have resembled soccer play without the stadium
with spectators, rolling commercials, sounds, etc. It
is therefore important, that we are able to put the
robots into the right context, and often giving the user
the chance to design the context. So, the user should
not only observe the robot or program the robot be-
haviour. Ideally, the user should have the freedom to

Fig. 18. LEGO robot rope climbing robots for the LEGO MIND-
STORMS Book of Records.

Fig. 19. A LEGO MINDSTORMS robot for the cross-country
skiing competition.

design the environment, design the robot morphology,
program the robot behaviours, and interact with the
robot (Figs. 18 and 19).

Another example that works toward such possibil-
ities is the LEGO MINDSTORMS Book of Records
that allows children to explore development of robot
morphology and robot programming, and ideally also
context development by adding new record categories.
In the LEGO MINDSTORMS Book of Records, we
developed games such as rope climbing, cross-country
skiing, shot put, Robin Hood precision shooting, etc.

8. Conclusion

The numerous practical experiments described here
have shown that it is possible to use modern artificial
intelligence in entertainment robotics. However, most
often the methods have to be re-designed in order to
meet the demand of providing both fun and educa-
tional experiences for the users. Hence, we have de-
veloped a number of user-guided approaches based on
behaviour-based systems, evolutionary computation,
neural networks, and multi-agent systems. Further, re-
search in the field of embodied artificial intelligence
suggest that we should put emphasis not only on opti-
misation of the robot controllers but look at the inter-
action between controller, morphology, material, and
environment. So we should allow the user the freedom
to manipulate as many of these parameters as possible,
and not only interact with a “static” robot or only de-



H.H. Lund / Applied Soft Computing 1 (2001) 3–20 19

velop the robot controller. This corresponds with the
educational practises of allowing the user/student to
construct the artefact, the functionality and the context
in which the artefact is placed.

For further reading see [17].

Acknowledgements

Luigi Pagliarini collaborated with the author on
making many of the applications described in this ar-
ticle, he engaged in numerous discussions about edu-
tainment with a psychological view, and he provided
valuable feedback. A number of experiments were de-
veloped in collaboration with students. They include
Kasper Støy, Esben Østergaard, Jesper Blynel, Mikkel
Yde Kjær, Rene Schalburg, Henrik Madsen, Jesper
Rasmussen, Jakob Vesterstrøm, and M. Rooker. All
views presented in this article are those of the author,
and do not necessarily present those of any sponsor
or funding agency.

References

[1] R. Arkin, Behavior-Based Robotics, MIT Press, Cambridge,
MA, 1998.

[2] V. Braitenberg, Vehicles: Experiments in Synthetic
Psychology, MIT Press, Cambridge, MA, 1984.

[3] R.A. Brooks, A robust layered control system for a mobile
robot, IEEE Journal of Robotics Automation 2 (1) (1986)
14–23.

[4] R.A. Brooks, Evolutionary robotics where from and where
to, in: Evolutionary Robotics: From Intelligent Robots to
Artificial Life ER’97, AAI Books, Ont., Canada, 1997,
pp. 1–19.

[5] D. Cliff, I. Harvey, P. Husbands, Explorations in evolutionary
robotics, Adaptive Behavior 2 (1) (1993) 73–110.

[6] D. Floreano, F. Mondada, Automatic creation of an
autonomous agent: genetic evolution of a neural network
driven robot, in: D. Cliff, P. Husbands, J. Meyer, S.W. Wilson
(Eds.), Proceedings of the 3rd International Conference on
Simulation of Adaptive Behavior (SAB’94), From Animals
to Animats, Vol. 3, MIT Press, Cambridge, MA, 1994.

[7] W.-P. Lee, J. Hallam, H.H. Lund, Learning complex robot
behaviors by evolutionary approach, in: A. Birk, J. Demiris
(Eds.), Proceedings of the 6th European Workshop on
Learning Robots, LNAI 1545, Springer, Heidelberg, 1997.

[8] F.L. Lewis, Neural network control of robot manipulators,
IEEE Expert/Intelligent Systems and their Applications 11 (3)
(1996) 64–75.

[9] H.H. Lund, AI in children’s play with LEGO robots, in:
Proceedings of the AAAI 1999 Spring Symposium Series,
AAAI Press, Menlo Park, CA, 1999.

[10] H.H. Lund, Robot soccer in education, Advanced Robotics
Journal 13 (8) (1999) 737–752.

[11] H.H. Lund, J.A. Arendt, J. Fredslund, L. Pagliarini Ola, What
goes up, must fall down, in: Proceedings of the Artificial
Life and Robotics 1999 (AROB’99), ISAROB, Oita, 1999,
pp. I-9–I-15.

[12] H.H. Lund, O. Miglino, From simulated to real robots, in:
Proceedings of the IEEE 3rd International Conference on
Evolutionary Computation, IEEE Press, NJ, 1996.

[13] H.H. Lund, O. Miglino, Evolving and breeding robots, in:
Proceedings of the 1st European Workshop on Evolutionary
Robotics, Springer, Berlin, 1998.

[14] H.H. Lund, O. Miglino, L. Pagliarini, A. Billard, A. Ijspeert,
Evolutionary robotics — a children’s game, in: Proceedings
of the IEEE 5th International Conference on Evolutionary
Computation, IEEE Press, NJ, 1998.

[15] H.H. Lund, L. Pagliarini, Robot soccer with LEGO
MINDSTORMS, in: Asada (Ed.), Proceedings of the
RoboCup’98, Springer, Heidelberg, 1999.

[16] H.H. Lund, L. Pagliarini, RoboCup Jr. with LEGO
MINDSTORMS, in: Proceedings of the International
Conference on Robotics and Automation (ICRA 2000), IEEE
Press, NJ, 2000.

[17] O. Miglino, H.H. Lund, M. Cardaci, Robotics as an
educational tool, Journal of Interactive Learning Research
10 (1) (1999) 25–48.

[18] O. Miglino, H.H. Lund, S. Nolfi, Evolving mobile robots in
simulated and real environments, Artificial Life 2 (4) (1996)
417–434.

[19] T.M. Mitchell, S.B. Thrun, Explanation-based neural network
learning for robot control, in: S.J. Hanson, J.D. Cowan, C.L.
Giles (Eds.), Advances in Neural Information Processing
Systems, Vol. 5, Morgan Kaufmann, Los Altos, 1993,
pp. 287–294.

[20] S. Nolfi, D. Floreano, Co-evolving predator and prey robots:
do ‘arm races’ arise in artificial evolution? Artificial Life
4 (4) (1998) 311–335.

[21] S. Nolfi, D. Floreano, O. Miglino, F. Mondada, How to evolve
autonomous robots: different approaches in evolutionary
robotics, in: R. Brooks, P. Maes (Eds.), Artificial Life, Vol.
IV, MIT Press, Cambridge, MA, 1994, pp. 190–197.

[22] E.H. Oestergaard, Evolving complex robot behaviour,
Master’s thesis, University of Aarhus, May 2000.

[23] L. Pagliarini, H.H. Lund, O. Miglino, D. Parisi, Artificial
life: a new way to build educational and therapeutic games,
in: Proceedings of the Artificial Life, Vol. V, MIT Press,
Cambridge, MA, 1996.

[24] R. Pfeifer, C. Scheier, Understanding Intelligence, MIT Press,
Cambridge, MA, 1999.

[25] E. Sklar, J. Johnson, H.H. Lund, Children Learning From
Team Robotics: RoboCup Junior 2000, Educational Research
Report, Department of Design and Innovation, Faculty of
Technology, The Open University, Milton Keynes, UK, 2000.

[26] V. Vucic, H.H. Lund, Self-evolving arts — organisms versus
fetishes, Muhely (The Hungarian Journal of Modern Art) 104
(1997) 69–79.

[27] S. Woodcock, Game AI: the state of the industry, in: Game
Developer, Freeman, New York, 1999.



20 H.H. Lund / Applied Soft Computing 1 (2001) 3–20

[28] S.-Y. Yoon, B.M. Blumberg, G.E. Schneider, Motivation
driven learning for interactive synthetic characters, in:
Proceedings of the 4th International Conference on
Autonomous Agents, ACM Press, New York, NY, 2000.

Henrik Hautop Lund is a professor in
sensor and actuator technology at the
Maersk Mc-Kinney Moller Institute for
Production Technology, University of
Southern Denmark, Odense. He holds a
PhD in computer systems engineering,
an MSc in computer science, and a BSc
in mathematics. In 1997, he founded the
LEGO Lab at the Danish National Cen-
ter for IT-Research/University of Aarhus.

The LEGO Lab was financed by the Danish Government and
Danish Industries, such as LEGO. The LEGO Lab was occupied
with development of LEGO MINDSTORMS robots and how to
put artificial intelligence into our daily life. In 2000, he moved his
activities to become professor at the Maersk Institute. The activi-
ties of his group are sponsored by the LEGO group, with whom
the research group has close relations. He worked previously as
research associate from 1992 to 1995 at the Institute of Psychol-
ogy, The National Research Council, Rome, Italy, doing research
in the fields of artificial life, neural networks, and evolutionary
computation. Further, he worked as research associate during 1996
and 1997 in the Department of Artificial Intelligence at Univer-
sity of Edinburgh, UK, doing research on biologically inspired
robotics and evolutionary robotics. He has been interested in the
relationship between robot behaviour and robot morphology since
1992. He has published more than 40 peer reviewed papers in
international, scientific journals and conference proceedings.


