Notes on This Document

Notes on Using This Document

- The contents provided by this document (PDF files) are intended only for supplying information.

- The contents provided by this document (PDF files) are subject to change without notice.

- We are not responsible for errors or omissions in technical or editorial aspects concerning the contents described in this document. We also are not responsible for technical measures, correspondence, execution according to this document, as well as for the results occurred by them such as inevitable, indirect or incidental damages.

Notes on Copyright

- Sony Corporation is the copyright holder of this document.

- No information in this document may be duplicated, reproduced or modified. It is also prohibited to publish the contents of this document on the Internet Website or other public media without the express written permission of Sony Corporation.

About Trademarks

- AIBO and OPEN-R are trademarks or registered trademarks of Sony Corporation.

- "Memory Stick" is a trademark of Sony Corporation. "TM" is not described in this document.

- Windows is registered trademark of Microsoft Corporation in the United States and/or other countries.

- Mac OS is registered trademark of Apple Computer, Inc in the United States and/or other countries.

- Linux is a registered trademark of Linus Torvalds.

- MIPS is a registered trademark of MIPS Technologies, Inc. in the United States and/or other countries.

- Adobe Acrobat and Adobe Reader are registered trademarks of Adobe Systems Incorporated.

- Other system names, product names, service names and firm names contained in this document are generally trademarks or registered trademarks of respective makers.
Notes on This Document ... 1
 Notes on Using This Document .. 1
 Notes on Copyright .. 1
 About Trademarks .. 1

Index .. 2

Revision Record ... 3
 20040106-E-004 ... 3

Installation Guide .. 4
 Changes from 20031219-E-004 to 20040106-E-005 4
 Changes from 20030201-E-003 to 20030210-E-004 6
 Changes from 20020730-E-002 to 20030201-E-003 9
 Changes from 20020603-E-001 to 20020730-E-002 15

Programmer’s Guide .. 16
 Changes from 20020730-E-002 to 20030201-E-003 16
 Changes from 20020603-E-001 to 20020730-E-002 17

Level2 Reference Guide ... 19
 Changes from 20020730-E-002 to 20030201-E-003 19
 Changes from 20020603-E-001 to 20020730-E-002 21

Model Information ERS-210 .. 51
 Changes from 20030201-E-003 to 20040106-E-004 51
 Changes from 20020730-E-002 to 20030201-E-003 51
 Changes from 20020603-E-001 to 20020730-E-002 52

Model Information ERS-220 .. 53
 Changes from 20020730-E-002 to 20030201-E-003 53
 Changes from 20020603-E-001 to 20020730-E-002 54

OPEN-R Internet Protocol Version 4 .. 56
 Changes from 20020603-E-001 ... 56
Revision Record

The revision record excludes the correction for tabs and indents.

20040106-E-004

The revision record (20040106-E-004) are written for Manuals (Old version).

The revision record for Installation Guide
Old version (20020603-E-001)
Old version (20020730-E-002)
Old version (20030201-E-003)
Old version (20030210-E-004)
New version (20040106-E-005)

The revision record for Programmer’s Guide
Old version (20020603-E-001)
Old version (20020730-E-002)
New version (20030201-E-003)

The revision record for Level2 Reference Guide
Old version (20020603-E-001)
Old version (20020730-E-002)
New version (20030201-E-003)

The revision record for Model Information ERS-210
Old version (20020603-E-001)
Old version (20020730-E-002)
Old version (20030201-E-003)
New version (20040106-E-004)

The revision record for Model Information ERS-220
Old version (20020603-E-001)
Old version (20020730-E-002)
New version (20030201-E-003)

The revision record for OPEN-R Internet Protocol Version4
New version (20020603-E-001)
Installation Guide
Changes from 20031219-E-004 to 20040106-E-005

Page 4

1.2 Download files
Change:
OPEN_R_SDK-1.1.3-r2.tar.gz
OPEN_R_SDK-sample-1.1.3-r4.tar.gz
OPEN_R_SDK-docE-1.1.3-r4.tar.gz
cygwin-packages-1.3.17-bin.exe
cygwin-packages-1.3.17-src.tar.gz

To:
OPEN_R_SDK-1.1.4-r1.tar.gz
OPEN_R_SDK-sample-1.1.4-r1.tar.gz
OPEN_R_SDK-docE-1.1.4-r1.tar.gz
cygwin-packages-1.3.22-bin.exe
cygwin-packages-1.3.22-src.tar.gz

Page 5

2.1 Cygwin
Change:
Double-click cygwin-packages-1.3.17-bin.exe.

To:
Double-click cygwin-packages-1.3.22-bin.exe.

Change:
directory cygwin-packages-1.3.17.

To:
directory cygwin-packages-1.3.22.

Page 6

2.4 OPEN-R SDK
The following are added.
Notes
1 In OPEN-R SDK 1.1.4 r1, if you set an environmental variable called
OPENRSDK_ROOT, you can install the OPEN-R SDK in a directory
other than the default (which is /usr/local/OPEN_R_SDK).

(Example of .bashrc)
export OPENRSDK_ROOT=/home/aibo/OPEN_R_SDK

2 In OPEN-R SDK 1.1.4 r1, unused header files are moved to
OPEN_R_SDK/OPEN_R/include/obsolete.

2.5 Sample programs
Change:
tar zxvf /xxx/OPEN_R_SDK-sample-1.1.3-r4.tar.gz

To:
tar zxvf /xxx/OPEN_R_SDK-sample-1.1.4-r1.tar.gz
3.2.2 How to setup WLANCONF.TXT

Change:

In OPEN-R SDK 1.1.3 r2, DNS server support is available. This new feature is commented out by default.

To:

1. In OPEN-R SDK 1.1.3 r2, DNS server support is available. This new feature is commented out by default.
2. In OPEN-R SDK 1.1.4 r1, to use DHCP service, set USE_DHCP=1 in the /OPEN-R/SYSTEM/CONF/WLANCONF.TXT file. AIBO can obtain an IP address by using the DHCP service in your local network.
3. In OPEN-R SDK 1.1.4 r1, you can use WEPKEY to 5 alpha-numeric letters or 10 hexadecimal digits (starting with "0x")
 Example) Strings: WEPKEY=AIBO2
 Hexadecimal: WEPKEY=0x4149424f32

Chapter4 Remote Processing OPEN-R

Change:

Notes

For communication between AIBO and remote host through a wireless LAN, it is necessary to boot AIBO before accessing it from the remote host.

To:

Notes

1. For communication between AIBO and remote host through a wireless LAN, it is necessary to boot AIBO before accessing it from the remote host.
2. Remote Processing OPEN-R runs on cygwin and Linux.
3. Remote Processing OPEN-R patch for GCC3.2 on Linux is included. C2.95 and GCC3.2 can be used.

4.2.2 Distributed execution on AIBO and host

Change:

2. Copy the following OPEN-R directories to a blank AIBO Programming Memory Stick.

 /usr/local/OPEN_R_SDK/OPEN_R/MS/WCONSOLE/nomemprot/OPEN-R

To:

2. Copy the following two OPEN-R directories to a blank AIBO Programming Memory Stick.

 /usr/local/OPEN_R_SDK/OPEN_R/MS/WCONSOLE/nomemprot/OPEN-R
 /mydir/sample/LMasterRSlave/RP/robot/MS/OPEN-R
Changes from 20030201-E-003 to 20030210-E-004

Page 4

1.2 Download files, OPEN-R SDK
Change:
OPEN_R_SDK-sample-1.1.3-r3.tar.gz
OPEN_R_SDK-docE-1.1.3-r3.tar.gz
To:
OPEN_R_SDK-sample-1.1.3-r4.tar.gz
OPEN_R_SDK-docE-1.1.3-r4.tar.gz

Page 5

2.1 Cygwin
The following are added.
In the rest of this document, we will unpack packages in cygwin's path by using its 'tar' command. In this explanation, whenever you see cygwin's path referred to (for example, /usr/local), it indicates cygwin's /usr/local, NOT c:\usr\local (from the root of your hard drive).

Page 6

The following are added.
2.2 CygIPC
1 Install CygIPC with the following steps. (/xxx is your directory where the downloaded file is placed)
 cd /
 tar zxvf /xxx/cygipc-1.13-2.tar.gz
Change:
2.2 gcc
To:
2.3 gcc

2.2 gcc
The following are deleted.
Here, we will unpack this package in the cygwin fs /usr/local (which corresponds to C:\cygwin\usr\local on your hard drive). In the rest of this document, whenever you see /usr/local, it indicates cygwin's /usr/local, NOT c:\usr\local.

2.2 gcc, Step 1
Change:
tar xzf /xxx/mipsel-devtools-3.2-bin-r1.tar.gz
To:
tar zxvf /xxx/mipsel-devtools-3.2-bin-r1.tar.gz

Page 7

Change:
2.3 OPEN-R SDK
To:
2.4 OPEN-R SDK

2.3 OPEN-R SDK, Step 1
Change:
tar xzf /xxx/OPEN_R_SDK-1.1.3-r2.tar.gz
To:
tar zxvf /xxx/OPEN_R_SDK-1.1.3-r2.tar.gz
2.3 OPEN-R SDK, Step1
Change:
The directory /usr/local/OPEN_R_SDK/OPEN_R will be created.
To:
The directory /usr/local/OPEN_R_SDK/OPEN_R, RP_OPEN_R will be created.

2.3 OPEN-R SDK, Step2
The following are deleted.
The directory /usr/local/OPEN-R SDK/RP_OPEN_R will be installed.
Change:
To:

2.4 Sample programs
Change:
To:

2.4 Sample programs, Step1
Change:
To:

The following are deleted.
2.5 CygIPC
2 Install CygIPC with the following steps.
cd /
tar zxf cygipc-1.13-2.tar.gz

2.6 AIBO Built-in Flash ROM Upgrade, Step1
Change:
To:

Change:
To:
The directory Upgrade will be created.
under the directory Upgrade.

2.6 AIBO Built-in Flash ROM Upgrade, Step2
Change:
To:

Page 8
3.1 Building
Change:
To:

Page 12
4.1.2 Running on host, Step3
Change:
To:
4.2.2 Distributed execution on AIBO and host, Step1
Change:
 cd /xxx/sample/LMasterRS/ve/RP/robot
To:
 cd /mydir/sample/LMasterRS/ve/RP/robot
1.2 Download files, OPEN-R SDK
Change:
- OPEN_R_SDK-1.1.3-r1.tar.gz
- OPEN_R_SDK-sample-1.1.3-r1.tar.gz
- OPEN_R_SDK-docJ-1.1.3-r2.tar.gz
- OPEN_R_SDK-docE-1.1.3-r1.tar.gz
To:
- OPEN_R_SDK-1.1.3-r2.tar.gz
- OPEN_R_SDK-sample-1.1.3-r3.tar.gz
- OPEN_R_SDK-docJ-1.1.3-r3.tar.gz
- OPEN_R_SDK-docE-1.1.3-r3.tar.gz

1.2 Download files, For windows platforms
Change:
- cygwin-packages-1.3.10-bin.exe
- mipsel-devtools-3.0.4-bin-r1.tar.gz
To:
- cygwin-packages-1.3.17-bin.exe
- mipsel-devtools-3.2-bin-r1.tar.gz
The following are added.
- cygipc-1.13-2.tar.gz

1.2 Download files, Source files
Change:
- cygwin-packages-1.3.10-src.tar.gz
- binutils-2.12.tar.gz
- gcc-3.0.4.tar.gz
- newlib-1.9.0.tar.gz
To:
- cygwin-packages-1.3.17-src.tar.gz
- binutils-2.13.tar.gz
- gcc-3.2.tar.gz
- newlib-1.10.0.tar.gz
The following are deleted.
- build-devtools-3.0.4-r1.sh shell script for building the above three files
The following are added.
- cygipc-1.13-2-src.tar.gz Source files of cygipc

1.2 Download files
The following are added.
- Scripts
 - build-devtools-3.2-r1.sh
 Shell script for building binutils, gcc and newlib
 - build-devtools-3.2-macosx-r1.sh
 Shell script for building tools on Mac OS X

2.1 Cygwin, Step1,2
Change:
- cygwin-packages-1.3.10-bin.exe
To:
- cygwin-packages-1.3.17-bin.exe
2.2 gcc, Step1
Change:

/xxx/mipsel-devtools-3.0.4-bin-r1.tar.gz

To:

/xxx/mipsel-devtools-3.2-bin-r1.tar.gz

Change:
ALLEL binutils-2.12
GNU gcc-3.0.4
newlib-1.9.0

To:

ALLEL binutils-2.13
GNU gcc-3.2
newlib-1.9.10

Change:

build-devtools-3.0.4-r1.sh

To:

build-devtools-3.2-r1.sh

Change:

binutils-2.12.tar.gz
GCC-3.0.4.tar.gz
newlib-1.9.0.tar.gz

To:

binutils-2.13.tar.gz
GCC-3.2.tar.gz
newlib-1.10.0.tar.gz

2.3 OPEN- R SDK, Step1
Change:

/xxx/OPEN_R_SDK-1.1.3-r1.tar.gz

To:

/xxx/OPEN_R_SDK-1.1.3-r2.tar.gz

The following are added.

2 To install Remote Processing OPEN-R, run the setup-rp-openr script.

/usr/local/OPEN_R_SDK/RP_OPEN_R/bin/setup-rp-openr

The directory /usr/local/OPEN-R SDK/RP_OPEN_R will be installed.

2.4 Sample program, Step1
Change:

/xxx/OPEN_R_SDK-sample-1.1.3-r1.tar.gz

To:

/xxx/OPEN_R_SDK-sample-1.1.3-r3.tar.gz

The following are added.

2.5 CygIPC
Install CygIPC with the following steps.

cd /
tar xzv cylp-1.13-2.tar.gz

Change:

2.5 AIBO Built-in Flash ROM Upgrade

To:

2.6 AIBO Built-in Flash ROM Upgrade
3.2.2 How to setup WLANCONF.TXT

Change:
Copy WLANDFLT.TXT in /OPEN-R/SYSTEM/CONF/ of an AIBO programming memory stick to WLANCONF.TXT, and edit it

To:
Copy WLANDFLT.TXT in /OPEN-R/SYSTEM/CONF/ of an AIBO programming memory stick to WLANCONF.TXT, and edit it to allow for DNS SERVER support in OPEN-R SDK 1.1.3 r2, DNS SERVER support is available. This new feature is commented out by default

Change:

APMODE = 2
CHANNEL = 3

To:

APMODE = 2
CHANNEL = 3
#DNS_SERVER_1 = 10.0.1.1
#DNS_SERVER_2 = 10.0.1.2
#DNS_SERVER_3 = 10.0.1.3
#DNS_DEFDNAME = example.net

The following are added.

DNS_SERVER_1,2,3
Specify IP addresses of up to three DNS servers
DNS_DEFDNAME
Specify default domain name

The following are added.

Chapter 4 Remote Processing OPEN-R

Notes
For communication between AIBO and remote host through a wireless LAN, it is necessary to boot AIBO before accessing it from the remote host.

4-1 Building & running ObjectComm
4-1-1 Running on AIBO
1 Build the executable file. (Here, mydir is an example directory)
 cd /mydir/sample/ObjectComm

2 Copy these two OPEN-R directories to a blank AIBO Programming Memory Stick.
 /usr/local/OPEN_R_SDK/OPEN_R/MS/WCONSOLE/nomemprot/
 OPEN-R
 /mydir/sample/ObjectComm/MS/OPEN-R

3 Insert the AIBO Programming Memory Stick into AIBO, then boot it. Subsequent operations (usage of wireless console, how to shutdown AIBO, etc.) are the same as before.

4-1-2 Running on host.
1 Run ipc-daemon.
 /usr/local/bin/ipc-daemon
2 Build the executable file.

 cd /mydir/sample/ObjectComm/RP/host
 make install

3 Run start-rp-openr

 $ /usr/local/OPEN_R_SDK/RP_OPEN_R/bin/start-rp-openr
 [pid:29444,msqid:196610,oid:0x00030002] oserviceManager
 [pid:29445,msqid:229379,oid:0x00038003] tcpGateway
 [pid:29446,msqid:262148,oid:0x00040004]
 MS/OPEN-R/MW/OBJS/SUBJECT.BIN
 [pid:29447,msqid:294917,oid:0x00048005]
 MS/OPEN-R/MW/OBJS/OBSERVER.BIN
 SampleSubject::Ready() : ASSERT READY
 SampleObserver::Notify() !!! Hello world !!!
 SampleSubject::Ready() : ASSERT READY
 SampleObserver::Notify() !!! Hello world again !!!
 SampleSubject::Ready() : ASSERT READY

4 Type ctrl-c to terminate the program.

4-2 Building & running LMasterRSlave

4-2-1 Running on AIBO.

1 Build the executable file.

 cd /mydir/sample/LMasterRSlave
 make install

2 Copy the following two OPEN-R directories to a blank AIBO Programming Memory Stick.

 /usr/local/OPEN_R_SDK/OPEN_R/MS/WCONSOLE/nomemprot/
 OPEN-R
 /mydir/sample/LMasterRSlave/MS/OPEN-R

3 Insert the AIBO Programming Memory Stick into AIBO. Then boot AIBO. Subsequent operations (usage of wireless console, how to shutdown AIBO, etc.) are the same as before.

4-2-2 Distributed execution on AIBO and host

In this case, system objects and POWERMON.BIN are running on AIBO, while LMRS.BIN is running on the host.

0 Run ipc-daemon (for Cygwin only)

 /usr/local/bin/ipc-daemon

Procedures for AIBO

1 Build the executable file.

 cd /xxx/sample/LMasterRSlave/RP/robot
 make install

2 Copy the following OPEN-R directories to a blank AIBO Programming Memory Stick.

 /usr/local/OPEN_R_SDK/OPEN_R/MS/WCONSOLE/nomemprot/
 OPEN-R
3 Edit the following according to your wireless setup.

/OPEN-R/SYSTEM/CONF/WLANCONF.TXT

4 Insert the AIBO Programming Memory Stick into AIBO, then boot it. Subsequent operations (usage of wireless console, how to shutdown AIBO, etc.) are the same as before.

Procedures for host
1 Build the executable file.

 cd /mydir/sample/LMasterRS/RS/DT/host
 make install

2 Edit the following.

 MS/OPEN-R/MW/CONF/HOSTGW.CFG

 Change 10.0.1.100 to the IP address of your AIBO.

 !ROBOT_PROXY 59001 10.0.1.100
 TCPGateway.Sensor.OSensorFrameVectorData.S 59002 10.0.1.100
 TCPGateway.Effector.OCommandVectorData.O 59003 10.0.1.100

3 Run start-rp-openr

 /usr/local/OPEN_R_SDK/RP_OPEN_R/bin/start-rp-openr

4 Type ctrl-c to terminate the program.

 Notes
 rp-openr-ipcrm

 SystemV IPC resources may sometimes remain unreleased after termination of the program. You can examine information about the SystemV IPC resources by using the ipcs command. Run the rp-openr-ipcrm script to release any remaining SystemV IPC resources.

 /usr/local/OPEN_R_SDK/RP_OPEN_R/bin/
 rp-openr-ipcrm

4-3 Limitations of Remote Processing OPEN-R

- The configuration of the system objects on AIBO is limited to 'nomemprot' when executing a program distributed between AIBO and a remote host. Therefore, please use the following directory as the OPEN-R directory to be copied to an AIBO Programming Memory Stick.

 /usr/local/OPEN_R_SDK/OPEN_R/MS/WCONSOLE/nomemprot/OPEN-R

- Description using [RobotDesign] as shown below is not supported in OBJECT.CFG and CONNECT.CFG on the host.

 #
 # OBJECT.CFG
 #
 [ERS-210]
 /MS/OPEN-R/MW/OBJIS/ERS-210.BIN

 [ERS-220]
 /MS/OPEN-R/MW/OBJIS/ERS-220.BIN
- Unavailable OPEN-R API for a host program

 OPENR::ControlPrimitive()
 OPENR::NewSoundVectorData()
 OPENR::DeleteSoundVectorData()
 OPENR::NewCdtVectorData()
 OPENR::DeleteCdtVectorData()
 OPENR::SetCdtVectorData()
 OPENR::Shutdown()
 OPENR::ObservePowerStatus()
 OPENR::UnobservePowerStatus()
 OPENR::FindDesignData()
 OPENR::DeleteDesignData()
 OPENR::Fatal()

- ANT (Aperios Network Toolkit) class library is not available for a host program.
Changes from 20020603-E-001 to 20020730-E-002

Page 1

About Trademarks
Change:
Acrobat and Adobe is a registered trademark …
To:
Acrobat and Adobe are registered trademarks…

Page 4

1.2 Download files, OPENR-R SDK
Change:
OPEN_R_SDK-docE-1.1.3-r1.tar.gz Manuals
To:
OPEN_R_SDK-docE-1.1.3-r2.tar.gz Manuals

1.2 Download files, For ERS-210 users
Change:
upgrade-OPEN_R-1.1.3-r1.tar.gz
To:
upgrade-OPEN_R-1.1.3-r2.tar.gz

1.2 Download files, Notes
Change:
Each file includes …
To:
Each file name includes…

Page 7

2.5 AIBO Built-in Flash ROM Upgrade, Step1
Change:
tar xzf /xxx/upgrade-OPEN_R-1.1.3-r1.tar.gz
To:
tar xzf /xxx/upgrade-OPEN_R-1.1.3-r2.tar.gz

Page 9

3.2 Running, Step3
Change:
Insert an AIBO wireless LAN card into AIBO.
To:
Insert an AIBO wireless LAN card and an AIBO Programming Memory Stick into AIBO. Then boot AIBO.

3.2 Running, Step4
This step is deleted.

3.2 Running, Step6
The following is deleted.
Insert the AIBO Programming Memory Stick into AIBO and boot AIBO.

3.2 Running, Step6
The following is added.
Notes
There are two ways to connect your PC to AIBO: with a wireless access point, or with an additional wireless LAN adapter in ad-hoc mode. To make sure AIBO is successfully connected to your network, you can execute the following console command after booting AIBO.
 ping (IP address of AIBO)
The following is added.

Chapter6 Remote Processing OPEN-R

Remote Processing OPEN-R is a remote processing environment where you can execute an OPEN-R based program on a remote host which is not AIBO.

By using Remote Processing OPEN-R, some objects can be executed on the remote host(connected to AIBO via wireless LAN), and other objects can be executed directly on AIBO. All objects will be executed as one program, distributed between the two machines.

Here are some advantages of Remote Processing OPEN-R:

- Objects executing on the remote host can reconnect to objects executing on AIBO without interrupting AIBO's execution. So, you can shorten the turn-around time for coding, executing, and debugging, and develop a program efficiently.

- There is source code compatibility between AIBO's objects and remote host's objects. So, you can use rich debugging tools(e.g. gdb) on the remote host.

- While executing a program, you can use the rich resources and various functions that the remote host PC provides.

In Remote Processing OPEN-R, we use TCPGateway objects on AIBO and also on the remote host. TCPGateway is the OPEN-R object that implements communication between the objects executing on AIBO, and the objects executing on the remote host. The communication between AIBO's objects and the remote host's objects are done by passing the ordinary protocol of the OPEN-R inter-object communication over the wireless LAN.

There is source code compatibility between AIBO's objects and remote host's objects, but there is no binary compatibility.

Remote Processing OPEN-R gives you the environment for building native (x86) binary executable from source code that works on AIBO (by compiling with the OPEN-R SDK). The binary files that work on Remote Processing OPEN-R are not identical to the binary files that work on AIBO.

A.2 C standard library

Change:

```
times
```

To:

```
time
```
Changes from 20020603-E-001 to 20020730-E-002

Page 7
2.2 Core class
Change:
As shown in figure3,
To:
As shown in figure 1-3.

Page 8
2.2 Core class, (1), Destroy method
Change:
This is called at startup…
To:
This is called at shutdown…

Page 15
2.5 Sending and receiving data
Change:
… obsFunc1 and sbjFunc2 are IDs to find an observer and a subject, which are defined in def.h (which is automatically generated from stub.cfg by executing ‘stubgen2’).
To:
… obsFunc1 and sbjFunc2 are index numbers for the arrays observer[] and subject[], respectively, to identify the observer and the subject. They are defined in def.h, which is automatically generated from stub.cfg by executing the ‘stubgen2’ command.

Page 23
4.3.2 Execution of AIBO Programming Memory Stick, Notes
Change:
the remaining battery life…
To:
the remaining battery capacity…

Page 28
5.2.2 System operation at CPU exception
Change:
…on the memory stick…
To:
…on the AIBO Programming Memory Stick…

5.2.2.1 Default EmON.CFG
Change:
…on the memory stick…
To:
…on the AIBO Programming Memory Stick…

Page 30
Notes
Change:
If you specify an option –g in the compilation of an object, both the result of disassembling and source codes can be intermingled, by replacing the argument –d in mipsel-linux-objdump with –S.
To:
If you specify the option –g in the compilation of an object, both the result of disassembling and source codes can be intermingled by replacing the argument –d in mipsel-linux-objdump with –S.
5.3 Commands in EMON.CFG
Change:
To:

5.2.5 Commands in EMON.CFG

Page 32
objs
Change:
To:

You can look at the relation…

Page 36
A1. File system
Change:
To:

There is no difference among the file descriptors 0, 1, or 2.
OPENR::ControlPrimitive(). Description

The following are added.

oprmreqSPEAKER_SET_SOUND_TYPE
oprmreqSPEAKER_GET_SOUND_TYPE

/* Set sound data type */
OPrimitiveControl_SpeakerSoundType soundType
(ospksndMONO16K16B);
OPENR::ControlPrimitive(speakerID,
oprmreqSPEAKER_SET_SOUND_TYPE,
&soundType, sizeof (soundType));

/* Get sound data type */
OPrimitiveControl_SpeakerSoundType soundType;
OPENR::ControlPrimitive(speakerID,
oprmreqSPEAKER_SET_SOUND_TYPE,
&soundType, sizeof (soundType));

Page 84

The following are added.

Chapter 6 wireless LAN API

As for the details for the obtained data, refer to the header file of each data type or the sample program.

ERA201D1_GetMACAddress()

Syntax
EtherStatus ERA201D1_GetMACAddress
(EtherDriverGetMACAddressMsg* msg)

Description
This gets the MAC address.

Parameters
msg MAC address

Returned value
ETHER_OK Success
ETHER_INVALID_PORT No WLAN card exists.
ETHER_UNSUPPORTED WLANDRV.BIN doesn't exist.

ERA201D1_GetEtherStatistics()

Syntax
EtherStatus ERA201D1_GetEtherStatistics
(EtherDriverGetStatisticsMsg* msg)

Description
This gets statistics of the network interface.

Parameters
msg statistics of the network interface

Returned value
ETHER_OK Success
ETHER_INVALID_PORT No WLAN card exists.
ETHER_UNSUPPORTED WLANDRV.BIN doesn't exist.
ERA201D1_GetWLANSettings()
Syntax
EtherStatus ERA201D1_GetWLANSettings
(EtherDriverGetWLANSettingsMsg* msg)
Description
This gets settings of the wireless network.
Parameters
msg settings of the wireless network
Returned value
ETHER_OK Success
ETHER_INVALID_PORT No WLAN card exists.
ETHER_UNSUPPORTED WLANDRV.BIN doesn't exist.

ERA201D1_GetWLANStatistics()
Syntax
EtherStatus ERA201D1_GetWLANStatistics
(EtherDriverGetWLANStatisticsMsg* msg)
Description
This gets statistics for the wireless network.
Parameters
msg statistics for the wireless network
Returned value
ETHER_OK Success
ETHER_INVALID_PORT No WLAN card exists.
ETHER_UNSUPPORTED WLANDRV.BIN doesn't exist.
Changes from 20020603-E-001 to 20020730-E-002

Page 1

About Registered Trademarks
Change:
Acrobat and Adobe is a registered trademark of Adobe Systems Incorporated.

To:
Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.

Page 10

SetReadyEntry(), Description
Change:
This sets entry for when a subject receives an ASSERT-READY or DEASSERT-READY message. This setting is done in DoInit().

To:
This sets entry for a subject to receive ASSERT-READY or DEASSERT-READY messages. This setting should be done in DoInit().

SetReadyEntry(), Parameters
Change:
entry Entry for receiving an ASSERT-READY or DEASSERT-READY message

To:
entry Entry for receiving ASSERT-READY or DEASSERT-READY messages

GetID(), Description
Change:
This gets the SubjectI-D of a subject. The SubjectID is a unique value among subjects.

To:
This gets the SubjectID of a subject. The SubjectID is a unique value among subjects.

Page 11

SetBufferSize(), Description
Change:
This sets the maximum buffer size prepared for each observer in subject. This setting is done in DoInit().

To:
This sets the maximum buffer size (number of entries) prepared in the subject for each observer. This setting should be done in DoInit().

SetBufferSize(), Parameters
Change:
size The maximum buffer size for each observer

To:
size The maximum buffer size (number of entries) for each observer

GetBufferSize(), Description
Change:
This returns the buffer size that was set in DoInit().

To:
This returns the buffer size (number of entries) that was set in DoInit().
GetBufferSize(), Returned value
Change:
Current buffer size
To:
Current buffer size (number of entries)

SetNotifyUnitSize(), Description
Change:
… For example, data is composed of a header part and a body part, and both
SetData() and NotifyObservers() are executed for the data. … In this case, SetData() and NotifyObserver() are called once.
To:
… For example, some data may be composed of a header part and a body
part, with each part requiring SetData(), followed by the execution of NotifyObservers(). … In this case, SetData() and NotifyObserver() are called once respectively for each transmission.

Page 12
GetNotifyUnitSize(), Description
Change:
This returns the number of SetData() call to make the minimum unit of
transmission data.
To:
This returns the number of SetData() calls to make the minimum unit of
transmission data.

SetData(const void* buf, size_t size), Description
Change:
This sets data (address and size) to the buffers of all the observers. Because
the specified data is copied to the shared memory segment, you can
overwrite the area pointed to by ‘buf’ after calling this function. If overflow
occurs, the oldest data waiting for transmission is overwritten by the current
data. Use RemainBuffer() to check for overflow beforehand.
To:
In this function, the data region specified by ‘buf’ and ‘size’ are copied
to a shared memory segment. Then, the information of the shared
memory segment is set to the transmission buffers for all the observers.
Because the specified region is copied to a shared memory segment, you
can overwrite the source region after calling this function. If a buffer
overflow occurs, the oldest entry waiting for transmission is overwritten by
the current information. Use RemainBuffer() to check for buffer overflow
beforehand.

SetData(const void* buf, size_t size), Parameters
Change:
size The size of data
To:
size The size of data in bytes.
SetData(const ObserverInfo& info, const void* buf, size_t size), Description
Change:
This sets data (address and size) to the buffer of the specified observer. Because this function can omit the call to FindObserver(), this function is more efficient than SetData(const ObserverID&, const void*, size_t). ... If overflow occurs, the oldest data waiting for transmission is overwritten by the current data. Use RemainBuffer() to check for the overflow beforehand.

To:
In this function, the data region specified by 'buf' and 'size' are copied to a shared memory segment. Then, the information of the shared memory segment is set to the transmission buffer for the observer specified by 'info'. Because this function can omit the call to FindObserver(), this function is more efficient than SetData(const ObserverID&, const void*, size_t). ... If a buffer overflow occurs, the oldest entry waiting for transmission is overwritten by the current information. Use RemainBuffer() to check for the buffer overflow beforehand.

SetData(const ObserverInfo& info, const void* buf, size_t size), Parameters
Change:
size The size of data.

To:
size The size of data in bytes.

Page 13
SetData(const ObserverID& id, const void* buf, size_t size), Description
Change:
This function is the same as SetData(*FindObserver(id), buf, size). That is, this sets data (address and size) to the buffer of the specified observer. Because the specified data is copied to the shared memory segment in this function, you can overwrite the area pointed to by 'buf' after calling this function. If overflow occurs, the oldest data waiting for transmission is overwritten by the current data. Use RemainBuffer() to check for the overflow beforehand.

To:
This function is the same as SetData(*FindObserver(id), buf, size). That is, the data region specified by 'buf' and 'size' are copied to a shared memory segment. Then, the information of the shared memory segment is set to the transmission buffer for the observer specified by 'id'. Because the specified region is copied to a shared memory segment, you can overwrite the source region after calling this function. If a buffer overflow occurs, the oldest entry waiting for transmission is overwritten by the current information. Use RemainBuffer() to check for the buffer overflow beforehand.

SetData(const ObserverID& id, const void* buf, size_t size), Parameters
Change:
id The observer ID. In case the ‘id’ is invalid for subject, the result or effect of this function is undefined.

To:
id The observer ID. In case the ‘id’ is invalid for the present subject, the result or effect of this function is undefined.

SetData(const ObserverID& id, const void* buf, size_t size), Parameters
Change:
size The size of data

To:
size The size of data in bytes.
SetData(RCRegion* region), Description
Change:
This sets the specified shared memory segment, region, to the buffers of all observers. If overflow occurs, the oldest data waiting for transmission is overwritten. To check for the overflow beforehand, use RemainBuffer(). …

To:
This sets the information of the shared memory segment specified by ‘region’, to the transmission buffers for all observers. If a buffer overflow occurs, the oldest entry waiting for transmission is overwritten. To check for the buffer overflow beforehand, use RemainBuffer(). …

SetData(const ObserverInfo& info, RCRegion* region), Description
Change:
… That is, this function sets the specified shared memory segment, region, to the buffer of the specified observer. If overflow, occurs the oldest data waiting for transmission is overwritten. To check for overflow beforehand, use RemainBuffer(). …

To:
… That is, this function sets the information of the shared memory segment specified by ‘region’, to the transmission buffer for the observer specified by ‘info’. If a buffer overflow occurs, the oldest entry waiting for transmission is overwritten. To check for buffer overflow beforehand, use RemainBuffer(). …

SetData(const ObserverInfo& info, RCRegion* region), Parameters
Change:
id The observer ID. If the 'id' is invalid for subject, the result or effect of this function is undefined.

To:
info The observer information. For example, the ObserverInfo type can be obtained by accessing the data that ObserverConstIterator points to, which is obtained by calling OSubject::begin().

SetData(const ObserverID& id, RCRegion* region), Description
Change:
… That is, this sets the shared memory segment specified by argument region, to the buffer for the specified observer. In case of overflow, the oldest data for transmission is overwritten. In order to know the overflow beforehand, use RemainBuffer(). …

To:
… That is, this sets the information of the shared memory segment specified by argument ‘region’, to the transmission buffer for the observer specified by ‘id’. In case of a buffer overflow, the oldest entry for transmission is overwritten. In order to know the buffer overflow beforehand, use RemainBuffer(). …

SetData(const ObserverID& id, RCRegion* region), Parameters
Change:
id … In case the 'id' is invalid for subject, the result or effect of this function is undefined.

To:
id … In case the 'id' is invalid for the present subject, the result or effect of this function is undefined.
SetData(OShmPtrBase& p), Description
Change:
This sets the specified shared memory segment to the buffers of all observers. If overflow occurs, the oldest data waiting for transmission is overwritten. To check for overflow beforehand, use RemainBuffer().

To:
This sets the **information of the** shared memory segment specified by ‘p’ to the **transmission** buffers for all observers. If a **buffer** overflow occurs, the oldest **entry** waiting for transmission is overwritten. To check for **buffer** overflow beforehand, use RemainBuffer().

Page 15

SetData(const ObserverInfo& info, const OShmPtrBase& p), Description
Change:
This sets the specified shared memory segment to the buffer of the specified observer. … If overflow occurs, the oldest data waiting for transmission is overwritten. …

To:
This sets the **information of the** shared memory **segment specified by ‘p’** to the **transmission** buffer for the observer **specified by ‘info’**. … If a **buffer** overflow occurs, the oldest **entry** waiting for transmission is overwritten. …

SetData(const ObserverID& id, const OShmPtrBase& p), Description
Change:
This sets the specified shared memory segment to the buffer of the specified observer. If overflow occurs, the oldest data waiting for transmission is overwritten. To check for overflow beforehand, use RemainBuffer(). …

To:
This sets the **information of the** shared memory **segment specified by ‘p’** to the **transmission** buffer for the observer **specified by ‘id’**. If a **buffer** overflow occurs, the oldest **entry** waiting for transmission is overwritten. To check for **buffer** overflow beforehand, use RemainBuffer(). …

SetData(const ObserverID& id, const OShmPtrBase& p), Parameters
Change:
id … In case the 'id' is invalid for subject, the result or effect of the function is undefined.

To:
id … In case the 'id' is invalid for the present subject, the result or effect of the function is undefined.

NotifyObserver(const ObserverInfo& observer), Description
Change:
This sends the data in the buffer to the specified observer. …

To:
This sends the data in the **transmission** buffer to the specified observer. …

Page 16

NotifyObserver(const ObserverID& id), Description
Change:
This sends the data in the buffer to the specified observer. … If the observer is not in the ASSERT-READY or DEASSERT-READY state, the data is kept in buffer and is sent soon after the observer’s state becomes ASSERT-READY. …

To:
This sends the data in the **transmission** buffer to the specified observer. … If the observer is not in the ASSERT-READY or DEASSERT-READY state, the data is kept in the buffer and is sent soon after the observer’s state becomes ASSERT-READY. …
NotifyObservers(void), Description
Change:
This sends the data in the buffer to all of the observers. …
To:
This sends the data in the transmission buffers to all of the observers. This performs the followings for each observer. …

RemainBuffer(const ObserverInfo& observer), Description
Change:
This returns the remaining number of buffer elements for the specified observer. If SetData() is called more than the number of times obtained by the returned value, the old data in buffer is deleted.
To:
This returns the remaining number of transmission buffer entries for the specified observer. If SetData() is called more than the number of times obtained by the returned value, the data in the buffer is deleted in oldest-first manner.

RemainBuffer(const ObserverID& id), Description
Change:
This returns the remaining number of buffer elements for the specified observer. If SetData() is called more than the number of times obtained by the returned value, the old data in buffer is deleted. …
To:
This returns the remaining number of transmission buffer elements for the specified observer. If SetData() is called more than the number of times obtained by the returned value, the data in the buffer is deleted in oldest-first manner. …

RemainBuffer(const ObserverID& id), Returned value
Change:
Remaining number of buffer elements
To:
Remaining number of buffer elements. 0 if observer ID is invalid.

RemainBuffer(void), Description
Change:
This returns the remaining number of buffer elements for the specified observer. If SetData() is called more than the number of times obtained by the returned value, the old data in buffer is deleted.
To:
This returns the remaining number of transmission buffer elements for observers. The number is the minimum value among the observers. If SetData() is called more than the number of times obtained by the returned value, the data in the buffer is deleted in oldest-first manner.

ClearBuffer(void), Description
Change:
This clears the transmission buffers of all observers.
To:
This clears the transmission buffers for all observers.

NumberOfObservers(void), Description
Change:
This returns the number of observers connecting to subject.
To:
This returns the number of observers connecting to the present subject.
NumberOfObservers(void), Returned value
Change:
The number of observers connecting to subject
To:
The number of observers connecting to the present subject

begin(), Description
Change:
This returns the iterator that points the first observer in the list of observers
that connect to this subject.
To:
This returns the iterator that points to the first observer in the list of
observers that connect to the present subject.

del(), Description
Change:
This returns the invalid iterator that points to the location after the last
observer in the list of observers that connect to this subject.
To:
This returns the invalid iterator that points to the location after the last
observer in the list of observers that connect to the present subject.

FindObserver(), Description
Change:
… If the observer with id is not found, the invalid iterator is returned.
To:
… If the observer with id is not found, an invalid iterator is returned.

IsAllReady(void), Returned value
Change:
Non-zero … If NotifyObserver() is executed under this state, a
message is immediately sent to the observers that require
the message.
To:
Non-zero … If NotifyObservers() is executed under this state, a
message is immediately sent to the observers that require
the message.

IsAnyReady(void), Returned value
Change:
Non-zero At least one observer in the ASSERT-READY state.
To:
Non-zero At least one observer is in the ASSERT-READY state.

Page 20
IsReady(const ObserverInfo& info), Description
Change:
This sees if the specified observer is in an ASSERT-READY state or not.
To:
This sees if the specified observer is in an ASSERT-READY state.
IsReady(const ObserverInfo& info), Parameters
Change:
 info The observer information. For example, type ObserverInfo can be
 obtained by accessing the data that type ObserverConstIterator
 points, which is obtained by calling OSubject::begin().
To:
 info The observer information. For example, type ObserverInfo can be
 obtained by accessing the data that type ObserverConstIterator
 points to, which is obtained by calling OSubject::begin().

IsReady(const ObserverInfo& info), Returned value
Change:
 Non-zero The specified observer is in an ASSERT-READY state.
To:
 Non-zero The specified observer is in the ASSERT-READY state.

IsReady(const ObserverInfo& info), Returned value
Change:
 Zero The specified observer is not in an ASSERT-READY state.
To:
 Zero The specified observer is not in the ASSERT-READY state.

IsReady(const ObserverID& id), Returned value
Change:
 Zero The specified observer is not in the ASSERT-READY state.
To:
 Zero The specified observer is not in the ASSERT-READY state,
 or ObserverID is invalid.

ReadyStatus(const ObserverInfo& info), Returned value
Change:
 A positive value It received an ASSERT-READY message from
 the observer, which is specified by subject.
 (ASSERT-READY state)
To:
 A positive value The subject received an ASSERT-READY
 message from the specified observer. (ASSERT-READY state)

ReadyStatus(const ObserverInfo& info), Returned value
Change:
 Zero Because the observer, which is specified by
 subject, has not sent any message yet, the state is
 unknown.
To:
 Zero Because the specified observer has not sent a
 message yet, the state is unknown.

ReadyStatus(const ObserverInfo& info), Returned value
Change:
 A negative value It received a DEASSERT-READY message from
 the observer, which is specified by subject.
 (DEASSERT-READY state)
To:
 A negative value The subject received a DEASSERT-READY
 message from the specified observer.
 (DEASSERT-READY state)
ReadyStatus(const ObserverID& id), Returned value
Change:
A positive value It received an ASSERT-READY message from
the observer, which is specified by subject.
(ASSERT-READY state)
To:
A positive value The subject received an ASSERT-READY
message from the specified observer. (ASSERT-
READY state)

ReadyStatus(const ObserverID& id), Returned value
Change:
Zero Because the observer, which is specified by
subject, has not sent any message yet, the state is
unknown.
To:
Zero Because the specified observer has not sent a
message yet, the state is unknown. Or, observer
ID is invalid.

ReadyStatus(const ObserverID& id), Returned value
Change:
A negative value It received a DEASSERT-READY message from
the Observer, which is specified by subject.
(DEASSERT-READY state)
To:
A negative value The subject received a DEASSERT-READY
message from the specified observer.
(DEASSERT-READY state)

ControlHandler(), Description
Change:
This sets up a subject in accordance with the received OControlHandler.
This is called during the connection phase of objects.
To:
This sets up a subject in accordance with the received OControlMessage.
This is called during the connection phase of objects.

SenderID(), Description
Change:
This returns the observer ID of the observer that sends OReadyEvent.
To:
This returns the observer ID of the observer that has sent OReadyEvent.

SetNotifyEntry(), Description
Change:
This sets the entry for when the observer receives a NOTIFY message. This
setting is done in DoInit().
To:
This sets the entry for the observer to receive NOTIFY messages. This
setting should be done in DoInit().
SetBufCtrlParam(), Description
Change:
This sets the necessary control parameters of the buffer for observers of a subject. This setting is done in DoInit().
To:
This sets the necessary control parameters of the buffers that the subject holds for observers. This setting should be done in DoInit().

SetBufCtrlParam(), Parameters
Change:
skip
This specifies the data to skip (a sampling interval) to reduce the amount of received data. The default value is zero, which means no sampling.
To:
skip
This specifies the data-skip (a sampling interval) to reduce the amount of receiving data. The default value is zero, which means no sub-sampling.

SetBufCtrlParam(), Parameters
Change:
min
This specifies the minimum amount of data when a subject sends the NOTIFY message to an observer. The default value is one. If you adequately set this parameter, you can reduce the amount of received data without data loss.
To:
min
This specifies the minimum amount of data units when a subject sends the NOTIFY message to an observer. The default value is one. If you adequately set this parameter, you can reduce the frequency of data-receiving without data loss.

SetBufCtrlParam(), Parameters
Change:
max
By an observer becomes ASSET-READY state, this specifies the maximum amount of a transmission buffer size that a subject should hold. This parameter must be greater than or equal to 'min'. The default value is one. Only the transmission data is held in the buffer when the value is one.
To:
max
This specifies the maximum transmission buffer size (units) that a subject should hold until an observer's state becomes ASSET-READY. This parameter must be greater than or equal to 'min'. The default value is one. Only the last transmission data unit is held in the buffer when the value is one.

SetSkip(), Description
Change:
This sets the necessary control parameter of the buffer for observers of a subject. This setting is done in DoInit(). This function is available to keep compatibility with previous software. This function is the same as SetBufCtrlParam(skip, 1, 1).
To:
This sets the necessary control parameter of the buffers that the subject holds for observers. This setting should be done in DoInit(). This function is available to keep compatibility with previous software. This function is the same as SetBufCtrlParam(skip, 1, 1).
SetSkip(), Parameters

Change:

```
skip  This specifies the data to skip (the sampling interval) to reduce the amount of received data. The default value is zero, which is no sampling.
```

To:

```
skip  This specifies the data-skip (the sampling interval) to reduce the amount of receiving data. The default value is zero, which means no sub-sampling.
```

NumberOfSubjects(), Description

Change:

```
This returns the number of subjects connecting to an observer.
```

To:

```
This returns the number of subjects connecting to the present observer.
```

NumberOfSubjects(), Returned value

Change:

```
The number of subjects connecting to an observer
```

To:

```
The number of subjects connecting to the present observer
```

begin(), Description

Change:

```
This returns the iterator that points the first subject in the subject list that connects to an observer.
```

To:

```
This returns the iterator that points to the first subject in the subject list that connects to the present observer
```

begin(), Returned value

Change:

```
The iterator that points the first subject
```

To:

```
The iterator that points to the first subject
```

end(), Description

Change:

```
This returns the invalid iterator that points to the location after the last subject in the subject list that connects to an observer.
```

To:

```
This returns the invalid iterator that points to the location after the last subject in the subject list that connects to the present observer.
```

Page 27

ConnectHandler(), Parameters

Change:

```
status  This indicates the status of the function for any user-defined initialization/resource allocation. The default value is oSUCCESS, and in case it is not oSUCCESS, a connection will be refused.
```

To:

```
status  This indicates the status of the function for any user-defined initialization/resource allocation. The default value is oSUCCESS, and in case it is not oSUCCESS, connection will be refused.
```
Page 28

<table>
<thead>
<tr>
<th>Change</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 NotifyEvent class</td>
<td>2.4 ONotifyEvent class</td>
</tr>
</tbody>
</table>

NumOfNotify(void), Description.

Change: This returns the number of times that ONotifyEvent() was executed to send data.

To: This returns the number of times that ONotifyEvent() was executed for the data that has been sent.

Page 30

Line 2

Change: This class has a pointer to the shared memory segment and controls the reference counter for the memory segment. The following are member functions.

To: This class has a pointer to the shared memory segment and controls the reference counter for the memory segment. The following are member functions. **You cannot instantiate this class on the local stack.**

RCRegion(void), Description

Change: This is constructor. It constructs the instance pointing NULL.

To: This is constructor. It constructs the instance pointing to NULL.

RCRegion(size_t size), Description

Change: This reserves the shared memory segment with the specified size, and constructs an instance pointing to this memory segment.

To: This reserves a shared memory segment with the specified size, and constructs an instance pointing to this memory segment.

RCRegion(MemoryRegionID memID, size_t offset, void* baseAddr=NULL, size_t size=0), Parameters

Change: size Data size

To: size Data size in bytes

Page 31

~RCRegion(), Description

Change: … Instead of calling the destructor, you can call RemoveReference().

To: … Instead of calling the destructor, **you must** call **RCRegion::**RemoveReference().
Page 32

Size(), Returned value

Change:
The size of data on the shared memory segment.

To:
The size *(in bytes)* of data *in* the shared memory segment.

Page 33

SetSize(), Description

Change:
This sets size to the value returned by RCRegion::Size(). This function is used so the user can optimization memory allocation routines.

To:
This sets the value returned by RCRegion::Size() to ‘size’. This function is used so the user can *apply* optimization *in original* memory allocation routines.

ReserveSharedMemory(), Description

Change:
…In case enough shared memory segments do not exist when a function is called, the necessary memory segment will be allocated…

To:
…In case enough shared memory segments do not exist when *this* function is called, the necessary memory segment will be allocated…

ReserveSharedMemory(), Parameters

Change:
 size When SetData(ptr, size) is called, a memory segment is used. The size for the memory segment is reserved here.

To:
 size *The size of the memory segment to be reserved, for future SetData(ptr, size) calls.*

Page 34

OShmPtrBase(const OShmPtrBase& p), Description

Change:
This constructs OShmPtrBase that refers to the same region as the specified OShmPtrBase refers.

To:
This constructs OShmPtrBase that refers to the same region as the specified OShmPtrBase refers *to*.

Page 35

Base(), Description

Change:
This returns the base address of data of a shared memory segment.

To:
This returns the base address of data *in* a shared memory segment.

Base(), Returned value

Change:
The base address of data of a shared memory segment

To:
The base address of data *in* a shared memory segment
Size(), Description
Change:
This returns the size of data of a shared memory segment.
To:
This returns the size of data in a shared memory segment.

Size(), Returned value
Change:
The size of data of a shared memory segment
To:
The size of data in a shared memory segment

MemID(), Returned value
Change:
Shared memory ID
To:
ID of a shared memory segment

Offset(), Description
Change:
This returns the offset of a shared memory segment.
To:
This returns the offset to the data segment.

Offset(), Returned value
Change:
The offset of a data segment
To:
The offset to the data segment

OShmPtr(size_t n), Description
Change:
This reserves a shared memory segment with sizeof(T)*n size, and constructs an array of OShmPtr<T> with n element. This function internally calls Allocate(n). A constructor Type T is not called.
To:
This reserves a shared memory segment with the size of sizeof(T)*n, and constructs an array of OShmPtr<T> with n elements. This function internally calls Allocate(n). A constructor for type T is not called.

OShmPtr(size_t n), Parameters
Change:
n An array of OShmPtr<T> with n element
To:
n An array of OShmPtr<T> with n elements

Allocate(), Description
Change:
This reserves a shared memory segment with the size of sizeof(T)*n, and allocates an array with type T and n elements. The reference counter controls this newly constructed shared memory segment. A constructor with type T is not called.
To:
This reserves a shared memory segment with the size of sizeof(T)*n, and allocates an array of type T with n elements. The reference counter controls this newly constructed shared memory segment. A constructor for type T is not called.
Allocate(), Parameters
Change:
\(n \) The number of elements of an array with type \(T \)
To:
\(n \) The number of elements of an array of type \(T \)

Page 39

OShmPtr<T>::Proxy operator*(void), Returned value
Change:
First element The first element in the array
To:
The first element in the array

Page 41

OVirtualRobotComm.Effector.OCommandVectorData.O
Change:
… OCommandVectorData reserves a shared memory with OPEN-R::NewCommandVectorData(). …
To:
… You can reserve a shared memory for OCommandVectorData with OPEN-R::NewCommandVectorData(). …

Change:
… Three sheets of YCrCb and a sheet of CDT are sent to access the image data.
To:
… The sending data structure is OFbkImageVectorData. Three sheets of YCrCb and a sheet of CDT are included in the image data.

Page 42

OVirtualRobotAudioComm.Speaker.OSoundVectorData.O
Change:
… OSoundVectorData reserves a shared memory with OPENR::NewSoundVectorData(). …
To:
… You can reserve a shared memory for OSoundVectorData with OPENR::NewSoundVectorData(). …

Page 43

ODataVectorInfo, Members
Change:
memRegionID This is the ID of a shared memory segment that has data.
To:
memRegionID This is the ID of a shared memory segment that holds data.

ODataVectorInfo, Members
Change:
TotalSize This is the size of a shared memory that has data.
To:
TotalSize This is the size of a shared memory that holds data.

Page 44

ODataVectorInfo, Members
Change:
wait This waits for commands and the output of sound, for the number of frames (8msec) specified by ‘wait’.
To:
wait Delays commands and the output of sound, for the number of frames (in units of 8msec) specified by ‘wait’.
ODataVectorInfo, Members

Change:

```plaintext
optional[odataOPTIONAL_MAX]
```

It is used for the delivery of the information between the object that sends OSensorFrameVectorData and the object that sends OCommandVectorData, OSoundVectorData. The data which is specified with optOffset and optSize is updated, and the data is copied to optional[] of OSoundFrameVectorData.

To:

```plaintext
optional[odataOPTIONAL_MAX]
```

It is used for the delivery of the information between the object that sends OSensorFrameVectorData and the object that sends OCommandVectorData, OSoundVectorData. The data in optional[] (whose range is specified with optOffset and optSize) is updated, and the data is copied to optional[] of OSensorFrameVectorData.

Page 45

4.2.1 OcommandVectorData, Description

Change:

This is a data structure that has joint and LED commands…..

It is possible to keep different kinds of commands with one OCommandVectorData.

To:

This is a data structure that holds joint and LED commands…..

It is possible to keep different kinds of commands in one OCommandVectorData.

Page 46

OCommandInfo, Members

Change:

```plaintext
frameNumber
```

The frame number of the first frame that is processed by the command.

To:

```plaintext
frameNumber
```

The frame sequence number when the first frame is processed by the command will be stored here.

OCommandInfo, Members

Change:

```plaintext
numFrames
```

… The value of numFrames (maximum of MAX_FRAMES=16) is the number of commands that are processed.

To:

```plaintext
numFrames
```

… Only numFrames frames out of ocommandMAX_FRAMES(=16) are processed.

OCommandInfo, Members

Change:

```plaintext
frameSize
```

This is the size (8 bytes) of command data in one frame that OCommandData keeps.

To:

```plaintext
frameSize
```

This is the size (8 bytes) of command data in one frame that OCommandData keeps.

OCommandInfo, Members

Change:

```plaintext
dataOffset
```

This is an offset of OCommandData corresponding to OCommandInfo.

To:

```plaintext
dataOffset
```

This is an offset to OCommandData corresponding to OCommandInfo.
OCommandInfo, Members

Change:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataSize</td>
<td>This is the data size (128 bytes) of OCommandData corresponding to OCommandInfo.</td>
</tr>
</tbody>
</table>

To:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataSize</td>
<td>This is the data size (128 bytes) of OCommandData corresponding to OCommandInfo.</td>
</tr>
</tbody>
</table>

OCommandData, Members

Change:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value[ocommandMAX_FRAMES]</td>
<td>This is command data. OCommandData can have data for a maximum of ocommandMAX_FRAMES (=16) frames. The valid number of frames is specified by numFrames of OCommandInfo.</td>
</tr>
</tbody>
</table>

To:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value[ocommandMAX_FRAMES]</td>
<td>This is command data. OCommandData can hold data for a maximum of ocommandMAX_FRAMES (=16) frames. The number of valid frames is specified by numFrames of OCommandInfo.</td>
</tr>
</tbody>
</table>

OJointCommandValue2, Members

Change:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>This is a value to be set to a joint. The unit is micro radians (10^-6 rad). In the case of 360 deg, the value would be 3141592.</td>
</tr>
</tbody>
</table>

To:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>This is a value to be set to a joint. The unit is micro radians (10^-6 rad). In the case of 180 deg, the value would be 3141592.</td>
</tr>
</tbody>
</table>

OJointCommandValue3, Members

Change:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>It is a value to be set to a plunger. value can be ojoint3-STATE0 or ojoint3-STATE1.</td>
</tr>
</tbody>
</table>

To:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>It is a value to be set to a plunger. value can be ojoint3_STATE0 or ojoint3_STATE1.</td>
</tr>
</tbody>
</table>

OLEDCommandValue2, Description

Change:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>…The control of an LED is specified by ON/OFF and its time. …</td>
</tr>
</tbody>
</table>

To:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>…The control of an LED is specified by ON/OFF and its duration. …</td>
</tr>
</tbody>
</table>

OLEDCommandValue2, Members

Change:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>… The shortest length of time is 8ms.</td>
</tr>
</tbody>
</table>

To:

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>… The unit of time is 8ms.</td>
</tr>
</tbody>
</table>

OSensorFrameInfo, Description

Change:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This has the type of element of OSensorFrameVectorData, the number of frames in sensor data and the offset to sensor data.</td>
</tr>
</tbody>
</table>

To:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This contains the type of element of OSensorFrameVectorData, OPrimitiveID, the number of frames in sensor data and the offset to sensor data.</td>
</tr>
</tbody>
</table>
OSensorFrameInfo, Members

Change:

frameNumber

This is the frame number when the first data of a corresponding OSensorFrameData is obtained.

To:

frameNumber

This is the frame sequence number when the first data of a corresponding OSensorFrameData is obtained.

OSensorFrameInfo, Members

Change:

dataOffset

This is the offset of OSensorFrameData corresponding to OSensorFrameInfo …

To:

dataOffset

This is the offset to OSensorFrameData corresponding to OSensorFrameInfo …

OSensorFrameInfo, Members

Change:

dataSize

This is a data size (128 bytes) of OSensorFrameData corresponding to OSensorFrameInfo.

To:

dataSize

This is a data size (256 bytes) of OSensorFrameData corresponding to OSensorFrameInfo.

Page 51

OSensorFrameData, Members

Change:

frame[osensorframeMAX_FRAMES]

This is sensor data. OSensorFrameData can have data for the maximum number of frames (osensorframeMAX_Frames =16). The valid number of frames is specified by numFrames in SensorFrameInfo.

To:

frame[osensorframeMAX_FRAMES]

This is sensor data. OSensorFrameData can have data for the maximum number of osensorframeMAX_Frames (=16) frames. The number of valid frames is specified by numFrames in OSensorFrameInfo.

Page 54

OSwitchStatus, Members

Change:

value

This is the status of a switch. It is either oswitchON or oswitchOFF.

To:

value

This is the status of a switch, converted from an A/D signal value obtained from a switch. It is either oswitchON or oswitchOFF.

Page 56

OFbkImageInfo, Description

Change:

… This is the data structure that has a YCrCb image and a CDT image.

To:

… This is the image information. This is the data structure that holds a YCrCb image and a CDT image.
OFbkImageInfo, Members

Change:

frameNumber

This is the frame number of the image when it was obtained.

To:

frameNumber

This is the frame sequence number when the image was obtained.

OFbkImage, Syntax

Change:

OFbkImage(OFbkImageInfo* info, byte*, byte* data, OFbkImageBand band)

To:

OFbkImage(OFbkImageInfo* info, byte* data, OFbkImageBand band)

OFbkImage, Description

Change:

…ofbkimageBAND_Y , ofbkimageBAND_Cr, ofbkimageBAND_Cb...

To:

…ofbkimageBAND_Y , ofbkimageBAND_Cr, ofbkimageBAND_Cb for band. ...

Pixel(), Description

Change:

This returns the pixel values of an image with coordinate (x, y). …

To:

This returns the pixel value of an image with coordinate (x, y). …

Pixel(), Returned value

Change:

The pixel values of an image with coordinate (x, y)…

To:

The pixel value of an image with coordinate (x, y)…

4.3 Communication with OVirtualRobotAudioComm

Change:

The following is the data for communication with OVirtualRobotAudioComm.

(OSoundVectorData A sound data

The data is created in a shared memory segment. The contents of this data are placed in the following order: ODataVectorInfo of a common header, the array of the information block of each element, and the array of the data.

To:

The following is the data for communication with

(OVirtualRobotAudioComm

(OSoundVectorData Sound data

The data is created in a shared memory segment. The contents of this data are placed in the following order: ODataVectorInfo as a common header, the array of the information block about each element, and the array of the data body.

4.3.1 OSoundVectorData, Description

Change:

This is the data structure that has sound data. …

To:

This is the data structure that holds sound data. …
OSoundInfo, Description
Change:
This is the data structure that has sound data information.
To:
This is the data structure that holds sound data information.

Page 61
OSoundInfo, Members
Change:
frameNumber For the output of sound, frameNumber is the frame number when OVirtualRobot processes the first frame of sound. For input of sound, the frame number when data was input is used.
To:
frameNumber For the output of sound, frameNumber is the frame sequence number when OVirtualRobot processes the first frame of sound. For input of sound, the frame sequence number when data was input is used.

Page 62
4.4.1 OCdtVectorData, Description
Change:
This is a data structure that has a color detection table. It can have a maximum table of ocdNUM_CHANNELS (=8). …
To:
This is a data structure that holds a color detection table. It can have a maximum of ocdNUM_CHANNELS (=8) tables. …

OCdtInfo, Description
Change:
… The values of Cr and Cb are an offset binary ranging between 0x0 and 0xff.
To:
… The values of Cr and Cb are offset binary ranging from 0x0 to 0xff.

Page 63
OCdtInfo, Members
Change:
type This is the data type. ofodataCDT is used.
To:
type This is the data type. odataCDT is used.

OCdtInfo, Members
Change:
primitiveID The PrimitiveID of OFbkImageSensor that sets the CDT.
To:
primitiveID The PrimitiveID of OFbkImageSensor that the CDT is set to.

OCdtInfo, Members
Change:
channel This is a channel of the CDT that sets a table.
To:
channel This is a channel of the CDT that a table is set to.
OPENR::NewCommandVectorData(), Parameters
Change: numCommands The number of element in OCommandData
To: numCommands The number of elements in OCommandData

OPENR::NewCommandVectorData(), Parameters
Change: memID MemoryRegionID of the shared memory in OCommandVectorData
To: memID MemoryRegionID of the shared memory for OCommandVectorData

OPENR::DeleteCommandVectorData(), Description
Change: This releases the shared memory in OCommandVectorData.
To: This releases the shared memory for OCommandVectorData.

OPENR::DeleteCommandVectorData(), Parameters
Change: memID MemoryRegionID of the shared memory in OCommandVectorData
To: memID MemoryRegionID of the shared memory for OCommandVectorData

OPENR::NewSoundVectorData(), Description
Change: This reserves shared memory for OSoundVectorData. Set the valid number of elements with SetNumData().
To: This reserves shared memory for OSoundVectorData. vectorInfo.numData is initialized to 0. Set the valid number of elements with SetNumData().

OPENR::NewSoundVectorData(), Parameters
Change: numSounds The number of element in sound data
To: numSounds The number of elements in sound data

OPENR::NewSoundVectorData(), Parameters
Change: memID MemoryRegionID of the shared memory in OSoundVectorData
To: memID MemoryRegionID of the shared memory for OSoundVectorData

OPENR::DeleteSoundVectorData(), Description
Change: This releases the shared memory in OSoundVectorData.
To: This releases the shared memory for OSoundVectorData.
OPENR::DeleteSoundVectorData(), Parameters
Change:

| memID | MemoryRegionID of the shared memory in OSoundVectorData |

To:

| memID | MemoryRegionID of the shared memory for OSoundVectorData |

OPENR::NewCdtVectorData(), Parameters
Change:

| memID | MemoryRegionID of the shared memory in OCdtVectorData |

To:

| memID | MemoryRegionID of the shared memory for OCdtVectorData |

OPENR::DeleteCdtVectorData(), Description
Change:

This releases the shared memory in OCdtVectorData.

To:

This releases the shared memory for OCdtVectorData.

OPENR::DeleteCdtVectorData(), Parameters
Change:

| memID | MemoryRegionID of the shared memory in OCdtVectorData. |

To:

| memID | MemoryRegionID of the shared memory for OCdtVectorData. |

OPENR::SetCdtVectorData(), Parameters
Change:

| memID | MemoryRegionID of the shared memory in OCdtVectorData. |

To:

| memID | MemoryRegionID of the shared memory for OCdtVectorData. |

OPENR::EnableJointGain(), Parameters
Change:

| primitiveID | OPrimitiveID of a Joint or oprimitiveID_UDEF |

To:

| primitiveID | OPrimitiveID of a Joint or oprimitiveID_UNDEF |

OPENR::DisableJointGain(), Parameters
Change:

| primitiveID | OPrimitiveID of a joint or oprimitiveID_UDEF |

To:

| primitiveID | OPrimitiveID of a joint or oprimitiveID_UNDEF |

OPENR::SetJointGain(), Parameters
Change:

| primitiveID | OprimitiveID of a joint or oprimitiveID_UDEF |

To:

| primitiveID | OprimitiveID of a joint or oprimitiveID_UNDEF |
OPENR::RegisterDefaultJointGain(), Description

Change:
This registers the default gain to a joint. If oprimitiveID_UNDEF is specified to primitiveID, it registers all joints opened by OPENR::OpenPrimitive() to the default gain.

To:
This registers the default gain to a joint. If oprimitiveID_UNDEF is specified to primitiveID, it registers the default gain to all joints opened by OPENR::OpenPrimitive().

OPENR::RegisterDefaultJointGain(), Parameters

Change:
- primitiveID OprimitiveID of a joint or oprimitiveID_UNDEF

To:
- primitiveID OprimitiveID of a joint or oprimitiveID_UNDEF

Page 71

OPENR::SetDefaultJointGain(), Description

Change:
- … oSUCCESS is returned when the gain of a joint has succeeded.

To:
- … oSUCCESS is returned when the gain of a joint has successfully been set.

OPENR::SetDefaultJointGain(), Parameters

Change:
- primitiveID OprimitiveID of the joint or oprimitiveID_UNDEF

To:
- primitiveID OprimitiveID of the joint or oprimitiveID_UNDEF

Page 72

OPENR::NewSyncKey(), Description

Change:
- … When you have exceeded 8, an oversynckeyUNDEF is substituted for the synchronization key, and oNO_SYNC_KEY is returned.

To:
- … When you have exceeded 8, an ovrsynckeyUNDEF is substituted for the synchronization key, and oNO_SYNC_KEY is returned.

Page 73

OPENR::SetMotorPower(), Description

Change:
This controls the power to motors. opowerOFF or opowerON is specified to power

To:
This controls the power to motors. opowerOFF or opowerON is specified to ‘power’.

OPENR::GetBootCondition(), Description

Change:
- … The boot condition is saved to bitmap. bootTime, batteryCapacityLow, and vibrationLevel are 0.

To:
- … The boot condition is saved to bitmap. bootTime, bootTimeType, and vibrationLevel are invalid.
OPENR::GetBootCondition(), Description
Change:
Types of boot conditions
obcbBOOT TIMER =0x0001 Starts with time.
To:
Types of boot conditions
obcbBOOT TIMER =0x0001 Starts on scheduled time.

OPENR::GetPowerStatus(), Description
Change:
This gets the power status, which is defined by the following structure.
To:
This gets the hardware status, which is defined by the following structure.

OPENR::GetPowerStatus(), Description
Change:
The following are the units for each member.
remainingCapacity
The battery remaining capacity (1% bit, 0 - 100%)
temperature
The battery temperature (0.1 Kelvin/bit, 0 - 500.0 Kelvin)
…
voltage
The battery voltage (1 mV/bit, 0 - 65535 mV)
current
The battery current (1 mA/bit, -32768 - 32767 mA)
To:
The following are the units for each member.
remainingCapacity
The battery remaining capacity (% , 0 - 100%)
temperature
The battery temperature (0.1 Kelvin, 0 - 500.0 Kelvin)
…
voltage
The battery voltage (mV, 0 - 65535 mV)
current
The battery current (mA, -32768 - 32767 mA)
The following are added.

robotStatus Indicates general hardware status.

orsbPAUSE = 0x00000001
 Pause switch is on.
orsbMOTOR_POWER = 0x00000002
 Motor power is on.
orsbVIBRATION_DETECT = 0x00000004
 Vibration detected.
orsbEX_PORT_CONNECTED = 0x00000008
 Connected to an external connector. External connectors include connectors of the AC adaptor and the station.
orsbSTATION_CONNECTED = 0x00000010
 Connected to the station.
orsbEX_POWER_CONNECTED = 0x00000020
 Connected to an external power supply.
orsbBATTERY_CONNECTED = 0x00000040
 Battery is connected.
orsbBATTERY_CHARGING = 0x00000080
 Battery is charging.
orsbBATTERY_CAPACITY_FULL = 0x00000100
 Battery capacity full.
orsbBATTERY_CAPACITY_LOW = 0x00000200
 Battery capacity low.
orsbBATTERY_OVER_CURRENT = 0x00000400
 Battery current too high
orsbBATTERY_OVER_TEMP_DISCHARGING = 0x00000800
 Battery temperature on discharging is too high
orsbBATTERY_OVER_TEMP_CHARGING = 0x00001000
 Battery temperature on charging is too high
orsbBATTERY_ERROR_OF_CHARGING = 0x00002000
 Error on battery charging
orsbERROR_OF_PLUNGER = 0x00004000
 Error on plunger. Unable to lock battery.
orsbOPEN_R_POWER_GOOD = 0x00008000
 Power supplied to OPEN-R Bus system (3.3V)
orsbERROR_OF_FAN = 0x00100000
 Error on cooling fan.
orsbDATA_STREAM_FROM_STATION = 0x00200000
 The station has written data onto the datastream region.
orsbREGISTER_UPDATED_BY_STATION = 0x00400000
 The station has updated some of the register region.
orsbRTC_ERROR = 0x00008000
 Error on RTC (Real Time Clock)
orsbRTC_OVERFLOW = 0x00100000
 Overflow occurred in RTC. (Note 1)
orsbRTC_RESET = 0x00200000
 Indicates RTC has been reset. (Note 2)
orsbRTC_SET = 0x00400000
 Indicates time-setting to RTC has been performed. This flag will be cleared on the notification to the entry that is monitoring this flag.
orsbSPECIAL_MODE = 0x00800000
 Required to enter special mode.
orsbBMN_DEBUG_MODE = 0x01000000
 Indicates BMN microcontroller is in the debug mode.
orsbCHARGER_STATUS = 0x02000000
 Indicates the charging circuit in AIBO is on.
orsbPLUNGER = 0x04000000
 Indicates the plunger is locked.
orsbSUSPENDED = 0x08000000
reserved
orsbSPECIAL_DATA_READ_REQ = 0x10000000
reserved

Note 1
The time is represented by the number of seconds elapsed since 2000/1/1 0:00. The data length is 32-bits (signed). Therefore, if the value exceeds 0x7fffffff, the elapsed seconds will be negative and unable to represent the time properly. Starting from year 2000, it is possible to represent time until around year 2068. This flag will be cleared when the time is set, by using the LCD panel on AIBO, via a command by the CPU, or via the station.

Note 2
If it is not charged for a long period, the local power of the RTC will be exhausted and the time kept in the RTC will be lost. This flag will also be cleared when the time is set, using the methods described above.

batteryStatus Indicates battery status.

obsbERROR_CODE_MASK = 0x000F
 Error code returned by the battery.
obsbFULLY_DISCHARGED = 0x0010
 Indicates the battery is fully discharged.
obsbFULLY_CHARGED = 0x0020
 Indicates the battery is fully charged.
obsbDISCHARGING = 0x0040
 Indicates the battery is discharging.
obsbINITIALIZED = 0x0080
 Always one
obsbREMAINING_TIME_ALARM = 0x0100
 Indicates the operable battery time is short.
obsbREMAINING_CAPACITY_ALARM = 0x0200
 Indicates remaining capacity of the battery is low. This is different from orsbBATTERY_CAPACITY_LOW in robotStatus.
obsbRESERVED0 = 0x0400
 reserved
obsbTERMINATED_DISCHARGING_ALARM = 0x0800
 Indicates discharging is terminated.
obsbOVER_TEMP_ALARM = 0x1000
 Temperature is too high.
obsbRESERVED1 = 0x2000
 reserved
obsbTERMINATED_CHARGING_ALARM = 0x4000
 Indicates that the battery charging is terminated.
obsbOVER_CHARGED_ALARM = 0x8000
 Alarm for excessive charging
OPENR::ObservePowerStatus(), Description

Change:

When a parameter specified by notifyStatus is changed, the content that was changed is notified to entry. NotifyStatus cannot monitor fullyChargedCapacity, voltage, or current. In robotStatus and batteryStatus, when a specified bit is changed, the bit is notified. In remainingCapacity, temperature, timeDif, and volume, the following symbolic constants are defined in OPower.h. In opso_*_NOTIFY_EVERY_CHANGE, when it is changed, it is notified. In opso_*_NOT_NOTIFY, when it is changed, it is not notified. Excluding the above values, when a value becomes the specified value, a notification occurs. The notified message structure is OPowerStatusMessage.

Once ObservePowerStatus() is executed, the specified entry will be notified when the power status matches the specified notifyStatus. This occurs until OPENR::UnobservePowerStatus() is executed. Each bit roboStatus and batteryStatus of notifyStatus is notified on both rising and falling edges. remainingCapacity, temperature, timeDif, and volume are notified when each value is changed, or it becomes the specified value. When a value is specified, a notification occurs when the value becomes the specified value. However, a notification does not occur when the value is changed. After that, a notification does not occur if the value is changed from the specified value.

To:

When a parameter specified by notifyStatus is changed, the specified ‘entry’ will be notified of the change. In NotifyStatus, fullyChargedCapacity, ‘voltage’, or ‘current’ cannot be monitored for their changes. For robotStatus and batteryStatus, a notification will occur when a specified bit is changed. For remainingCapacity, temperature, timeDif, and volume, the following symbolic constants are defined in OPower.h. Specifying opso_*_NOTIFY_EVERY_CHANGE for a parameter indicates notification of changes of this parameter. Specifying opso_*_NOT_NOTIFY for a parameter indicates not to notify when parameter is changed. A value excluding the above two indicates notification when the parameter’s value becomes the specified value. The notified message structure is OPowerStatusMessage.

…

Once ObservePowerStatus() is executed, the specified entry will be notified every time the power status matches the specified notifyStatus. This continues until OPENR::UnobservePowerStatus() is executed. For each bit of robotStatus and batteryStatus in notifyStatus, a notification will occur on both rising and falling edges. For remainingCapacity, temperature, timeDif, and volume, a notification will occur when each parameter’s value is changed, or it becomes the specified value. When a value is specified, a notification occurs when the parameter’s value becomes the specified value. However, a notification will not occur if the parameter’s value is changed from the specified value, nor if the parameter’s value is unchanged.
OPENR::FindDesignData(), Description
Change:
… If it is found, the design data file is written to shared memory, and the starting address and ODesignDataID are returned. If you specify the reserved keyword ‘SYS_CPUINFO’ to a parameter, the operating frequency of the CPU and the starting address of OCPUInfo is returned. Though the keyword ‘SYS_CPUINFO’ is not registered to DESIGNDB.CFG, this keyword works.

To:
… If it is found, the design data file is copied to shared memory, and the starting address and ODesignDataID are returned. If you specify the reserved keyword ‘SYS_CPUINFO’ to a parameter, you can obtain the operating frequency of the CPU, as the starting address of OCPUInfo is returned. Even if the keyword ‘SYS_CPUINFO’ is not registered to DESIGNDB.CFG, this keyword works.

OPENR::FindDesignData(), Parameters
Change:
 size Size of design data

To:
 size Size of design data in bytes

OPENR::FindDesignData(), Returned value
Change:
 oNOT_FOUND The keyword or design data does not exist.

To:
 oNOT_FOUND The keyword or design data body does not exist.

OPENR::FindDesignData(), Returned value
Change:
 oDESIGNDATA_SIZE_ZERO The file size in design data is 0.

To:
 oDESIGNDATA_SIZE_ZERO The file size for design data is 0.

Page 77

OPENR::DeleteDesignData(), Description
Change:
 This releases the memory in design data.

To:
 This releases the memory for design data.

OPENR::GetRobotDesign(), Description
Change:
 This gets the robot design.

To:
 This gets the ‘robot design’.

OPENR::GetRobotDesign(), Parameters
Change:
 robotDesign robotDesign Robot design (ex. ERS-210)

To:
 robotDesign ‘Robot design’ string (ex. ‘ERS-210’)
OPENR::GetMemoryStickStatus(), Description
Change:
This checks the status of the Memory Stick
 omemorystickNOT_EXIST
No Memory Stick exists.
To:
This checks the status of the AIBO Programming Memory Stick
 omemorystickNOT_EXIST
No AIBO Programming Memory Stick exists.

OPENR::GetMemoryStickStatus(), Parameters
Change:
status The status of the Memory Stick
To:
status The status of the AIBO Programming Memory Stick

Page 78

OPENR::Fatal(), Description
Change:
This sounds a warning sound with the buzzer in the microcomputer, and
 turns off power. Specify the kind of warning sound with fatal.
To:
This sounds a warning sound with the buzzer in the BMN microcontroller,
 and turns off power. Specify the kind of warning sound with ‘fatal’.

OPENR::Fatal(), Parameters
Change:
fatal The kind of warning sound. Only ofatalMEMORY_STICK is supported.
To:
fatal The kind of warning sound.

OPENR::Fatal(), Parameters
Change:
ofatalMEMORY_STICK Memory Stick destruction error sound
To:
ofatalMEMORY_STICK AIBO Programming Memory Stick destruction error sound

OPENR::SetTime(), Description
Change:
This sets the time of the RTC to the time specified by time. When time is a
 value from –12 to +12 and the time difference, that is different from the
 current time difference, is set, the time difference is also set to the BMN
 microcomputer.
To:
This sets the time specified by ‘time’ to the time of the RTC. If the time
difference is set in ‘time’ as a value from –12 to +12 that is different from
the current time difference, the time difference is also set to the BMN
 microcontroller.

OPENR::SetTime(), Parameters
Change:
time Time and a time difference
To:
time The structure of time and a time difference
OPENR::GetTime(), Description
Change:
 This gets the time and a time difference.
To:
 This gets the time and the time difference.

OPENR::GetTime(), Parameters
Change:
 time The structure of time difference and time
To:
 time The structure of time and time difference
Model Information ERS-210

Changes form 20030201-E-003 to 20040106-E-004

Page 20

4.1.1 Head Sensor

Change:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.0N</th>
<th>0gf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2941995</td>
<td>2.941995N</td>
<td>300gf</td>
<td></td>
</tr>
</tbody>
</table>

To:

min:0 (0.0N = 0gf)
max:980665 (0.980665N = 100gf)

Changes form 20020730-E-002 to 20030201-E-003

Page 18

The following are added.

2.4 Relations between the polarity of PWM and the polarity of rotation angle of joints

In OPEN-R SDK 1.1.3 r1, rotation angle of some of the joints had opposite polarity to the corresponding PWM duty. In OPEN-R SDK 1.1.3 r2, polarities of rotation angle and PWM duty are aligned for all of the joints.

Polarity of rotation angle of joint to the positive direction of PWM

(The version of OPEN-R SDK 1.1.3) r1 r2

PRM : /r1/c1-Joint2:j1	Neck tilt	-	+
PRM : /r1/c1/c2-Joint2:j2	Neck pan	-	+
PRM : /r1/c1/c2/c3-Joint2:j3	Neck roll	-	+
PRM : /r1/c1/c2/c3/c4-Joint2:j4	Mouth	+	+
PRM : /r2/c1-Joint2:j1	Left fore Leg, J1 joint	+	+
PRM : /r2/c1/c2-Joint2:j2	Left fore Leg, J2 joint	-	+
PRM : /r2/c1/c2/c3-Joint2:j3	Left fore Leg, J3 joint	+	+
PRM : /r3/c1-Joint2:j1	Left hind leg, J1 joint	-	+
PRM : /r3/c1/c2-Joint2:j2	Left hind leg, J2 joint	-	+
PRM : /r3/c1/c2/c3-Joint2:j3	Left hind leg, J3 joint	+	+
PRM : /r4/c1-Joint2:j1	Right fore leg, J1 joint	-	+
PRM : /r4/c1/c2-Joint2:j2	Right fore leg, J2 joint	-	+
PRM : /r4/c1/c2/c3-Joint2:j3	Right fore leg, J3 joint	+	+
PRM : /r5/c1-Joint2:j1	Right hind leg, J1 joint	+	+
PRM : /r5/c1/c2-Joint2:j2	Right hind leg, J2 joint	-	+
PRM : /r5/c1/c2/c3-Joint2:j3	Right hind leg, J3 joint	+	+
PRM : /r6/c1-Joint2:j1	Tail pan	-	+
PRM : /r6/c2-Joint2:j2	Tail tilt	-	+

Page 19

3.2 Speaker

The following are added.

ospksndMONO16K16B
Changes from 20020603-E-001 to 20020730-E-002

Page 7

1.2.2 Leg
Change:
3DOF (Waist:1DOF, Shoulder:1DOF, Knee:1DOF) x2
3DOF (Waist:1DOF, Shoulder:1DOF, Knee:1DOF) x2
To:
3DOF x 2
3DOF x 2

Page 13

2.1 list of CPC Primitive Locator. Left fore leg, Left hind leg, Right fore leg, Right hind leg
Change:
Waist Joint
Shoulder Joint
Knee Joint
To:
J1 Joint
J2 Joint
J3 Joint

Page 16

2.2.3 Software Limitation of 4 Joints in Head
Change:
Please set the angle within the range of right roll and mouth defined in the area of tilt and pan. Pan is also symmetric on the right side. Please pay attention to the relationship between the large and small roll.
To:
Roll angle and mouth are limited to certain ranges in respective areas defined by tilt and pan angles. Pan is also symmetric on the right side. Please note the relationship between the roll direction and the positive/negative sign of the roll angle.

Page 18

2.3 Servo Gain
Change:
The following are the default servo gains in joints for ERS-210.
To:
The following are the standard servo gains in joints for ERS-210.

2.3 Servo Gain
The following are deleted.
// head tilt
// head pan
// head roll
// leg FL joint
// leg FL shoulder
// leg FL knee
// leg RL joint
// leg RL shoulder
// leg RL knee
// leg FR joint
// leg FR shoulder
// leg FR knee
// leg RR joint
// leg RR shoulder
// leg RR knee
The following are added.

2.4 Relations between the polarity of PWM and the polarity of rotation angle of joints

In OPEN-R SDK 1.1.3 r1, rotation angle of some of the joints had opposite polarity to the corresponding PWM duty. In OPEN-R SDK 1.1.3 r2, polarities of rotation angle and PWM duty are aligned for all of the joints.

Polarity of rotation angle of joint to the positive direction of PWM
(The version of OPEN-R SDK 1.1.3) r1 r2

<table>
<thead>
<tr>
<th>PRM</th>
<th>Joint</th>
<th>Neck tilt</th>
<th>Neck pan</th>
<th>Neck roll</th>
</tr>
</thead>
<tbody>
<tr>
<td>/r1/c1-Joint2:j1</td>
<td>Neck tilt</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>/r1/c1/c2-Joint2:j2</td>
<td>Neck pan</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>/r1/c1/c2/c3-Joint2:j3</td>
<td>Neck roll</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>/r2/c1-Joint2:j1</td>
<td>Left fore Leg, J1 joint</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>/r2/c1/c2-Joint2:j2</td>
<td>Left fore Leg, J2 joint</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>/r2/c1/c2/c3-Joint2:j3</td>
<td>Left fore Leg, J3 joint</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>/r3/c1-Joint2:j1</td>
<td>Left hind leg, J1 joint</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>/r3/c1/c2-Joint2:j2</td>
<td>Left hind leg, J2 joint</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>/r3/c1/c2/c3-Joint2:j3</td>
<td>Left hind leg, J3 joint</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>/r4/c1-Joint2:j1</td>
<td>Right fore leg, J1 joint</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>/r4/c1/c2-Joint2:j2</td>
<td>Right fore leg, J2 joint</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>/r4/c1/c2/c3-Joint2:j3</td>
<td>Right fore leg, J3 joint</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>/r5/c1-Joint2:j1</td>
<td>Right hind leg, J1 joint</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>/r5/c1/c2-Joint2:j2</td>
<td>Right hind leg, J2 joint</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>/r5/c1/c2/c3-Joint2:j3</td>
<td>Right hind leg, J3 joint</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Speaker

The following are added.
ospksndMONO16K16B

Changes from 20020603-E-001 to 20020730-E-002

Page 7

1.2.2 Leg
Change:
3DOF (Waist:1DOF, Shoulder:1DOF, Knee:1DOF) x2
3DOF (Waist:1DOF, Shoulder:1DOF, Knee:1DOF) x2
To:
3DOF x 2
3DOF x 2

Page 12

2.1 list of CPC Primitive Locator, Left fore leg, Left hind leg, Right fore leg, Right hind leg
Change:
Waist Joint
Shoulder Joint
Knee Joint
To:
J1 Joint
J2 Joint
J3 Joint

Page 13

2.1 list of CPC Primitive Locator, Tail
Change:
PRM:/r6/11-LED2:11 Back sensor(The first from the left)
PRM:/r6/12-LED2:12 Back sensor(The second from the left)
PRM:/r6/13-LED2:13 Back sensor(The third from the left)
PRM:/r6/14-LED2:14 Back sensor(The third from the right)
PRM:/r6/15-LED2:15 Back sensor(The second from the right)
PRM:/r6/16-LED2:16 Back sensor(The first from the right)
PRM:/r6/17-LED2:17 Tail sensor(Center)
PRM:/r6/18-LED2:18 Tail sensor(Right)
PRM:/r6/19-LED2:19 Tail sensor(Left)
To:
PRM:/r6/11-LED2:11 Back multi-indicator(The first from the left)
PRM:/r6/12-LED2:12 Back multi-indicator(The second from the left)
PRM:/r6/13-LED2:13 Back multi-indicator(The third from the left)
PRM:/r6/14-LED2:14 Back multi-indicator(The third from the right)
PRM:/r6/15-LED2:15 Back multi-indicator(The second from the right)
PRM:/r6/16-LED2:16 Back multi-indicator(The first from the right)
PRM:/r6/17-LED2:17 Tail light(Center)
PRM:/r6/18-LED2:18 Tail light(Right)
PRM:/r6/19-LED2:19 Tail light(Left)

Page 15

2.2.3 Software Limitation of 4 Joints in Head
Change:
Please set the angle within the range of right roll and mouth defined in the area of tilt and pan. Pan is also symmetric on the right side. Please pay attention to the relationship between the large and small roll.
To:
A roll angle is limited to certain ranges in respective areas defined by tilt and pan angles. Pan is also symmetric on the right side. Please note the relationship between the roll direction and the positive/negative sign of the roll angle.
2.3 Servo Gain
Change:
The following are the default servo gains in joints for ERS-220.
To:
The following are the standard servo gains in joints for ERS-220.

2.3 Servo Gain
The following are deleted.
// head tilt
// head pan
// head roll
// leg FL joint
// leg FL shoulder
// leg FL knee
// leg RL joint
// leg RL shoulder
// leg RL knee
// leg FR joint
// leg FR shoulder
// leg FR knee
// leg RR joint
// leg RR shoulder
// leg RR knee

3.1 LED
Change:
PRM:/r6/l1-LED2:11 Back sensor(The first from the left)
PRM:/r6/l2-LED2:12 Back sensor(The second from the left)
PRM:/r6/l3-LED2:13 Back sensor(The third from the left)
PRM:/r6/l4-LED2:14 Back sensor(The third from the right)
PRM:/r6/l5-LED2:15 Back sensor(The second from the right)
PRM:/r6/l6-LED2:16 Back sensor(The first from the right)
PRM:/r6/l7-LED2:17 Tail sensor(Center)
PRM:/r6/l8-LED2:18 Tail sensor(Right)
PRM:/r6/l9-LED2:19 Tail sensor(Left)
To:
PRM:/r6/l1-LED2:11 Back multi-indicator(The first from the left)
PRM:/r6/l2-LED2:12 Back multi-indicator (The second from the left)
PRM:/r6/l3-LED2:13 Back multi-indicator (The third from the left)
PRM:/r6/l4-LED2:14 Back multi-indicator (The third from the right)
PRM:/r6/l5-LED2:15 Back multi-indicator (The second from the right)
PRM:/r6/l6-LED2:16 Back multi-indicator (The first from the right)
PRM:/r6/l7-LED2:17 Tail light(Center)
PRM:/r6/l8-LED2:18 Tail light(Right)
PRM:/r6/l9-LED2:19 Tail light(Left)

3.1 LED
The following are deleted.
PRM:/r1/c1/c2/c3/f1-Sensor:f1 Head sensor
PRM:/r1/c1/c2/c3/f2-Sensor:f2 Head sensor
PRM:/r1/c1/c2/c3/c4/s5-Sensor:s5 Face sensor
OPEN-R Internet Protocol Version4
Changes from 20020603-E-001

none