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Abstract 

To combine sensor information from distributed robot 
teams, it is critical to know the locations of all the robots 
relative to each other.  This paper presents a novel fault 
tolerant localization algorithm developed for centimeter-
scale robots, called Millibots.  To determine their 
locations, the Millibots measure the distances between 
themselves with an ultrasonic distance sensor.  They then 
combine these distance measurements with dead 
reckoning in a maximum likelihood estimator. 

The focus of this paper is on detecting and isolating 
measurement faults that commonly occur in this 
localization system.   Such failures include dead 
reckoning errors when the robots collide with undetected 
obstacles, and distance measurement errors due to 
destructive interference between direct and multi-path 
ultrasound wave fronts. 

Simulations show that the fault tolerance algorithm 
accurately detects erroneous measurements and 
significantly improves the reliability and accuracy of the 
localization system. 

Keywords: mobile robotics; fault tolerance; 
collaborative localization; robot teams; fault detection and 
isolation. 

1. Introduction and Related Work 

No longer confined to industrial applications, robots 
are more often entering the human environment.  Toy 
robots, robotic wheelchairs, surgical robots, and robots in 
hospitals and nursing homes all come in close contact with 
humans.  Some research suggests that, by 2010, the 
number of robots in homes will reach 5 million [5].  As a 
result, a failure in a robotic system can not only cause 
unacceptable economic losses but also put the safety of 
the people in its environment at risk [16]. 

This situation is aggravated by the fact that robot 
failures are relatively common.  Even in well-structured 

industrial environments, the recorded mean time to failure 
for manipulators ranges from only 500 to 2500 hours [4]. 
We expect that robot failures will be even more common 
in household robots for which, most likely, rigorous 
preventive maintenance schedules will not be enforced. 
According to Parker [13], it is due to the lack of research 
on fault tolerance and adaptivity of robot teams that robot 
autonomy and multi-robot cooperation have not yet been 
adequately demonstrated. 

This paper investigates fault tolerance issues in a group 
of robot systems that are particularly vulnerable to 
failures.  The CMU Millibots are very small (7x7x7cm) 
and inexpensive robots that contain little or no 
redundancy within each robot but rely on collaboration 
within a team to identify and overcome failures.  These 
Millibots provide a good test-bed for fault tolerance as 
they reflect the limited reliability and capabilities of future 
inexpensive household robots.  

Fault tolerance is usually achieved in two steps: The 
system first detects and isolates the faults, after which it 
reconfigures itself to overcome the faults. Generally, for 
individual mobile robots, this approach requires 
considerable redundancy in sensing, actuation, 
communication, and computation, resulting in large, 
complex, and expensive systems. For multi-robot systems, 
redundancy is also available at the team level.  For 
instance, sensing capabilities on one robot may be 
replaced by a combination of sensing modalities on other 
robots.  As a result, fault tolerance can still be 
implemented for robots with limited capabilities (and 
possibly without any redundancy) such as the Millibots.   

In this paper, the problem of fault tolerance in the 
localization system of the CMU Millibots is addressed. 
The objective of the Millibots is to collaboratively map 
and explore an unknown environment. When a robot 
moves, its new position is estimated from a combination 
of dead reckoning measurements and distance 
measurements between robots. Faults in these 
measurements produce incorrect position estimates, and 
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correspondingly, errors in the maps of the environment.  
This paper presents a method to detect and overcome such 
errors, based on the information redundancy in the dead 
reckoning and distance measurements. 

2. The Millibots 

The Millibots are configured from modular components 
including communication, computation, mobility, camera, 
sonar, and IR modules [8]. Assembling different types of 
modules creates specialized robots that collaborate to 
accomplish a given task.  Because of their small size 
(7x7x7 cm), the computational and sensing capabilities of 
Millibots are limited. Higher-level functions such as 
mapping and localization are provided by a larger robot or 
team leader. 

The knowledge of the position and orientation of each 
Millibot is crucial to achieve accurate mapping and 
exploration of the environment. Conventional localization 
systems, based on dead reckoning, GPS, landmark 
recognition or map-based positioning [15], do not offer a 
viable solution due to limitations in size, power, or 
sensing of the Millibots. To overcome these problems, a 
novel method was developed that utilizes dead reckoning 
and ultrasonic distance measurements between robots 
[12].  

The Millibot localization system is based on 
trilateration [2], i.e., determination of the position based 
on distance measurements to known landmarks or beacons 
[9, 10]. GPS is an example of a trilateration system; the 
position of a GPS unit on earth is calculated from distance 
measurements to satellites in space. Similarly, the Millibot 
localization system determines the position of each robot 
based on distance measurements to stationary robots with 
known positions. 

As is illustrated in Figure 1, the distance between two 

robots is measured using synchronized ultrasound and RF 
pulses. A conical reflector mounted above a low-cost 
transducer allows the Millibots to detect and transmit 
ultrasonic pulses in any direction [8].  Periodically, each 
robot that serves as a beacon emits simultaneously a radio 
frequency (RF) pulse and an ultrasonic pulse. Using the 
RF pulse for synchronization, the distance to the beacon is 
measured as the time-of-flight of the ultrasonic pulse 
multiplied by the speed of sound (343m/s at 20°C). The 
team leader coordinates the pinging sequence to ensure 
that beacon signals from multiple robots do not interfere 
with one another.  To improve the accuracy, this 
procedure is repeated several times and the sample mean 
is utilized to estimate the distance to the beacon.  

All the Millibots transmit their distance measurements 
to the team leader who calculates the new robot positions.  
A maximum likelihood algorithm determines the most 
likely position of the robot given the measured distances 
to the current beacons. Assuming that the dead reckoning 
and distance measurements are normally distributed 
random variables, the likelihood of being located at a 
position (x,y) is given by 
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where N(p,σ2) is a normal distribution with zero mean and 
variance of σ2 evaluated at p, (xd,yd) is the position 
measured through dead reckoning, r(i) is the distance 
from the beacon i to the Millibot, m is the number of 
beacons, and ( )irb  is the sample mean of the distance 

measurements from beacon i to the Millibot. 
The estimated new position of the Millibot is given by 

the value of (x,y) that maximizes the probability density 
function in Equation (1), and is computed using the BFGS 
non-linear optimization algorithm [6].  The algorithm is 
initialized with the dead reckoning estimate (xd,yd) or an 
estimate based on the closed form trilateration expression 
derived in [11]. In general, only a few iterations are 
necessary to reach the optimum value because of its 
proximity to the starting point.  

3. Fault Modes and Effects Analysis 

Although the localization algorithm described above 
has the potential to provide very accurate position 
estimates [12], practice has shown that it is susceptible to 
multiple failures, some of which occur relatively often.  
Before developing a fault tolerance scheme, we analyze 
these failure modes using Fault Modes and Effects 
Analysis (FMEA) [1]. 
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Figure 1: Ultrasonic distance measurement. 
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3.1. Incorrect ultrasonic distance measurements 

We have identified three different causes for erroneous 
distance measurements. 

A first failure occurs when the ultrasonic pulse is either 
not emitted by the beacon or not received by the Millibot. 
This could happen due to a failure in the transducers, the 
circuitry, or the communication with the team leader. 
These faults do not occur often and result in a clearly 
identifiable effect: failing to register an ultrasonic pulse. 

Incorrect distance measurements also result when there 
is an obstacle between the beacon and the Millibot 
blocking the ultrasonic pulse. The effect, in this case, is 
more complicated because an ultrasonic pulse that 
bounces around the obstacle (multi-path) may still be 
detected, resulting in a distance measurement larger than 
the actual distance.  

The same effect can occur due to destructive 
interference.  As is illustrated in Figure 2, at certain 
distances between the robots, the wave propagated in the 
direct path interferes destructively with the wave that 
bounces off the floor.  For the Millibots this failure mode 
is especially pronounced at distances of 0.5m and 0.8m 
(the interference at 2.5m, shown in Figure 2, is outside the 
range of the sensor).  The effect, again, is that a secondary 
echo is measured instead, resulting in too large a distance 
measurement. 

3.2. Incorrect dead reckoning measurements 

The motion commands for the Millibots are executed 
by a local PID controller that receives feedback from 
optical encoders.  Although the control loop is sufficiently 
accurate to ensure that the motors actually execute the 
desired movement (within a certain variance due to thread 
slippage), the following failures can still occur. 

A first group of faults is a result of hardware failures of 
the actuators, mechanical transmissions, wheels, encoders 
or controllers.  These faults are rather uncommon and 

result in a movement to the wrong position, no movement 
at all, or continuous movement without stopping. A more 
common failure mode occurs when the Millibots run into 
an undetected obstacle. The effect varies from stopping 
before reaching the desired position to falling over.  Due 
to thread slippage, these failures cannot be detected 
through the encoder readings. 

In conclusion, both groups of faults result in a 
discrepancy between the actual position and the estimated 
position based on dead reckoning. 

4. Fault Tolerance 

As pointed out in the previous section, faults affecting 
localization occur commonly in the Millibot system—
especially the destructive interference failure mode occurs 
often.  To ensure accurate position estimation, it is critical 
that these faults are detected and isolated so that they can 
be taken into account by the estimation algorithm. Such a 
fault tolerance scheme is presented in this section. 

4.1. Fault Detection and Isolation 

Past research in fault detection and isolation (FDI) has 
focused on faults in individual mobile robots with 
redundant sensors [7, 14].  For example, encoder readings 
are compared with integrated gyroscope measurements to 
detect faulty estimates of the robot orientation. The 
Millibots, however, do not have this level of sensing 
redundancy.  Instead, they take advantage of the 
information redundancy in the combined dead reckoning 
and ultrasonic distance measurements for the entire team 
of robots. 

Based on the dead reckoning information, we can 
compute the expected distance from the moving Millibot 
to each of the beacon Millibots.  Assuming that the 
distance traveled and the distance to the beacons is 
relatively large, this expected distance is approximately 
normally distributed.  The ultrasonic distance 
measurement is also a sample from a population that is 
approximately normally distributed (the discretization 
error in the ultrasonic sensor is much smaller than the 
measurement error).  Our FDI scheme is based on 
statistical tests that verify whether the two normally 
distributed distance measurements (based on dead 
reckoning and ultrasonic pulses) are consistent, i.e., have 
the same expected value.  If they are not consistent, a fault 
has occurred. 

The test is based on the following statistical properties. 
Consider two random variables, ( )21 , xx , from two 

different populations both with a normal distribution. It 
can be shown that the difference of the sample means, 
( )21 xx − , is also normally distributed with a mean and 

variance equal to [3]:  
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Figure 2: Destructive interference. 
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where n1 and n2 are the sample sizes. Or, as a direct 
corollary: 
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is normally distributed with zero mean and unit variance. 

To test whether both populations, 1x  and 2x , have the 

same expected value ( )21 µµ = , we can use the following 

hypothesis: 

H0: 021 =− µµ  if 2/12/1 αα −− ≤≤− zzz  (4) 

where α is the level of significance, and z is 
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An alternative hypothesis is 

H1: 021 ≠− µµ  if 2/12/1 or αα −− ≥−≤ zzzz . (6) 

For a given α, the value of 2/1 α−z  can be found in the 

standard normal tables.  
We now apply this test to the two distance 

measurements: rd(i), the distance from the beacon i to the 
Millibot based on dead reckoning, and rb(i), the 
corresponding ultrasonic distance measurement.  The 
hypothesis variable, z(i), is then: 
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where nb(i) is the number of independent ultrasonic 
measurements by beacon i. Assuming that the variances 
on the position coordinates, x and y, are small, the 

variance 2
)(ird

σ  can be obtained from: 
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Table 1 summarizes the different fault scenarios and 
corresponding statistical hypotheses:  If no faults occur, 
the variable z(i) of every beacon is small, confirming the 
hypothesis H0. If an error in the ultrasonic distance 
measurement between the Millibot and beacon j occurs 
(hypothesis H1), z(j) is negative and large (negative 

because an erroneous measurement is always larger than 
the true distance, as explained in Section 3). Since we 
assume that only one error occurs at a time, the other 
variables, z(i) with i≠j, will all be small.  If this is not the 
case, then we conclude that an error in the dead reckoning 
measurement has occurred (hypothesis H2).  

4.2. Reconfiguration 

After the fault has been detected and isolated, the 
localization algorithm is easily reconfigured by ignoring 
the erroneous measurement.  If an incorrect distance 
measurement for beacon j is detected, Equation (1) is  
modified to 
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If incorrect dead reckoning measurements are detected, 
Equation (1) becomes 
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in which the dead reckoning information is not utilized.  
This requires that at least three Millibots serve as beacons 
for a unique maximum to exist. 

5. Results 

A series of experiments have been conducted to test the 
effectiveness of a team of Millibots to explore and map a 
given area [8]. In these experiments, a human operator 
who controlled the Millibot team could plan the individual 
robot motions to avoid distances at which destructive 
interference occurs. The robot motions were also planned 
to avoid ill-conditioned configurations, such as collinear 
beacons. The experiments showed that the localization 
algorithm performs well when no faulty distance 
measurements occur. However, it becomes very difficult 

Hyp. Fault Region 

H0 No faults 
( ) 2/12/1 αα −− ≤≤− zizz  

for i = 1, 2, …, m 

H1 

Incorrect 
ultrasonic distance 
measurement for 

beacon j 

( )jzz ≥− − 2/1 α , 
( ) 2/12/1 αα −− ≤≤− zizz  

for i = 1, 2,  …, m,  i ≠ j 

H2 
Incorrect dead 

reckoning 
information 

otherwise 

Table 1: Hypothesis tests for the FDI procedure. 
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to avoid these faults (i.e. avoid collinearity and destructive 
interference) with more than four robots on a team.  

We performed several simulations to test the fault 
tolerance algorithms. The Figures 3 and 4 show snapshots 
from a GUI that controls four Millibots in a mapping task. 
The simulations performed without the fault tolerance 
system (Figure 3) show that significant errors result when 
incorrect distance estimates are considered in the 
localization algorithm.  The gray region around the robot 
B indicates the area covered by the sonar sensors used to 
detect objects; errors in the estimated position translate 
into significant mapping errors. 

The simulations in which the fault tolerance system was 

active show that the faults described in Section 3 could be 
detected correctly. One such scenario is illustrated in 
Figure 4.  In this simulation, destructive interference 
occurred in the distance measurement between the robots 
A and B.  The values of z in Equation (7) were -6.03 for 
beacon A, and 0.41 and –0.04 for the other beacons. For a 
significance of α=0.01, z1-α/2 equals 2.326 resulting in a 
confirmation of hypothesis H1 (since –6.03 < -2.326). As 
a result, the localization algorithm ignored the erroneous 
distance measurement to robot A and estimated the robot 
position based only on the dead reckoning information 
and the distance measurements to the other two robots. 

The fault tolerance algorithm has the additional 
advantages that it is not computationally expensive, and 
that it provides additional quantitative information to the 
human operator with respect to the performance of the 
localization system. This information can be used to 
improve the individual robot motion operation. 

6. Conclusion 

Due to destructive interference of ultrasonic pulses or 
collisions with undetected obstacles, faults occur 
commonly in the Millibot localization system. It is 
therefore important to employ fault tolerance mechanisms 
to improve its reliability and accuracy.    

This paper introduced an FDI system based on 
statistical hypothesis testing that can identify which of the 
measurements (distance measurements and dead 
reckoning) is incorrect.  Because of the structure of the 
maximum likelihood estimator, the localization algorithm 
can be easily modified to omit these erroneous 
measurements. Simulations showed that the fault tolerance 
procedure successfully detected and compensated for 
incorrect measurements, thus improving the accuracy and 
reliability of the localization system. 

In the future, the fault tolerance procedure should be 
tested with the real Millibots. In particular, research 
should focus on incorporating of fault tolerance 
procedures into the real-time Millibot path-planning 
system. The problem of multiple simultaneous faults 
should be addressed too, along with a characterization of 
the reliability of the localization system under this 
scenario.  
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Figure 4: Correct position estimate for robot B.  The 
FDI procedure detected the erroneous distance 
measurement with respect to beacon A. 
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