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Abstract

This is the first of a two-part paper that investigates the stability properties of a system of
multiple mobile agents with double integrator dynamics. In this first part we generate stable flocking
motion for the group using a coordination control scheme which gives rise to smooth control laws
for the agents. These control laws are a combination of attractive/repulsive and alignment forces,
ensuring collision avoidance and cohesion of the group and an aggregate motion along a common
heading direction. In this control scheme the topology of the control interconnections is fixed and
time invariant. The control policy ensures that all agents eventually align with each other and have
a common heading direction while at the same time avoid collisions and group into a tight formation.

I. Introduction

Over the last years, the problem of coordinating the motion of multiple autonomous agents,
has attracted significant attention. Besides the links of this issue to problems in biology, social
behavior, statistical physics, and computer graphics, to name a few, research was partly motivated
by recent advances in communication and computation. Considerable effort has been directed in
trying to understand how a group of autonomous moving creatures such as flocks of birds, schools of
fish, crowds of people [30], [17], or man-made mobile autonomous agents, can cluster in formations
without centralized coordination.

Similar problems have been studied in ecology and theoretical biology, in the context of animal
aggregation and social cohesion in animal groups [1], [20], [32], [9], [6]. A computer model mimicking
animal aggregation was proposed in [23]. Following the work in [23] several other computer models
have appeared in the literature (cf. [10] and the references therein), and led to creation of a new area
in computer graphics known as artificial life [23], [27]. At the same time, several researchers in the
area of statistical physics and complexity theory have addressed flocking and schooling behavior in
the context of non-equilibrium phenomena in many-degree-of-freedom dynamical systems and self
organization in systems of self-propelled particles [31], [29], [28], [18], [14], [25], [4], [12]. Similar
problems have become a major thrust in systems and control theory, in the context of cooperative
control, distributed control of multiple vehicles and formation control; see for example [16], [13],
[21], [22], [5], [15], [7], [26], [11], [19].

The animal aggregation model of [23] aimed at generating computer animation of the motion
of bird flocks and fish schools. It was based on three dimensional computational geometry of the
sort normally used in computer animation or computer aided design. The author called the generic
simulated flocking creatures “boids”. The basic flocking model consists of three simple steering
behaviors which describe how an individual agent maneuvers based on the positions and velocities
its nearby flockmates:

• Separation: steer to avoid crowding local flockmates.
• Alignment: steer towards the average heading of local flockmates.
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• Cohesion: steer to move toward the average position of local flockmates.
Each mobile agent has direct access to the whole scene’s geometric description. The superposition of
these three rules results in all agents moving in a formation, with a common heading while avoiding
collisions.

Generalizations of this model include a leader follower strategy, in which one agent acted as a
group leader and the other agents would just follow the aforementioned cohesion/separation/alignment
rules, resulting in leader following. Vicsek et al. [31] proposed such a model in 1995. Although de-
veloped independently, Vicsek’s model turns out to be a special case of [23], in which all agents
move with the same speed (no dynamics), and only follow an alignment rule. In [31], each agent
heading is updated as the average of the headings of agent itself with its nearest neighbors plus some
additive noise. Numerical simulations in [31] indicate a coherent collective motion, in which the
headings of all agents converge to a common value. This was quite a surprising result in the physics
community and was followed by a series of papers [3], [29], [28], [24], [18]. A proof of convergence
for Vicsek’s model (in the noise-free case) was given in [11].

The goal of this paper is to develop a mathematical model for the flocking phenomenon in [23],
introduce the control laws that give rise to such behavior and provide a system theoretic justification
by combining results from classical control theory, mechanics and algebraic graph theory. In this first
part of the paper, we consider the case where the topology of the control interactions between the
agents is fixed. Each agent regulates its position and orientation based on a fixed set of “neighbors”.
In this case, the control inputs for the agent are smooth. The case where the set of neighbors may
change in time, depending on the relative distances between the agent and its flockmates, is treated
separately in Part II. Here we show that under fixed control interconnection topology, the system
of mobile agents is capable of coordinating itself so that all agents attain a common heading, they
cluster to a tight formation and move in a collision free fashion. The cohesion and separation rules
can be decoupled from alignment. The results of this paper are in correspondence with those of
[11], where nearest neighbor alignment laws were applied to kinematic models of mobile agents.
Specifically, it is shown that the addition of dynamics and cohesion/separation control actions do
not affect the stability of the flocking motion.

This paper is organized as follows: in section II we define the problem addressed in this paper
and sketch the solution approach. In section III we give a brief introduction on algebraic graph
theory. The purpose of section IV is to introduce the distributed control scheme that will establish
the desired flocking behavior, and analyze the stability of the closed loop system. The results of
section IV are verified in section V via numerical simulations. Section VI summarizes and highlights
new research directions.

II. Problem Description

Consider N agents, moving on the plane with dynamics described by:

ṙi = vi (1a)

v̇i = ai i = 1, . . . , N , (1b)

where ri = (xi, yi)
T is the position vector of agent i, vi = (ẋi, ẏi)

T is its velocity vector and
ai = (ux, uy)

T its control (acceleration) input. The heading of agent i, θi, is defined as:

θi = arctan(ẏi, ẋi) . (2)

Relative position vector between agents i and j is denoted rij = ri − rj .
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Each agent is controlled through acceleration inputs. The objective is to have group coordination
under a distributed control scheme. The control input for agent i is given as the combination of
two control forces (Figure 1):

ai = ari
+ aθi

. (3)

The first component, ari
, is derived from the field produced by an artificial potential function, Vi,

that depends on the relative distances between agent i and its flockmates. This term is responsible
for collision avoidance and cohesion in the group. The second component, aθi

regulates the heading
of agent i to the weighted average of that of its flockmates, acting in a direction normal to the
velocity vector of i. These components do not contribute to the kinetic energy of the system and
can be regarded as gyroscopic forces [2]. We will show that the combination of these control forces
establish a stable a stable, collision free flocking motion for the group.

ri

vi

−∇ri
Vi

θi

aθi

x̂

ŷ

ẑ

Fig. 1. Control forces acting on agent i.

III. Graph Theory Preliminaries

In the discussion that follows, we will use some graph theory terminology which we briefly intro-
duce in this section. For more information, the interested reader is referred to [8].

An (undirected) graph G consists of a vertex set, V, and an edge set E , where an edge is an
unordered pair of distinct vertices in G. If x, y ∈ V, and (x, y) ∈ E , then x and y are said to be
adjacent, or neighbors and we denote this by writing x ∼ y. The number of neighbors of each vertex
is its valency. A path of length r from vertex x to vertex y is a sequence of r + 1 distinct vertices
starting with x and ending with y such that consecutive vertices are adjacent. If there is a path
between any two vertices of a graph G, then G is said to be connected.

The adjacency matrix A(G) = [aij ] of an (undirected) graph G is a symmetric matrix with rows
and columns indexed by the vertices of G, such that aij = 1 if vertex i and vertex j are neighbors
and aij = 0, otherwise. The valency matrix ∆(G) of a graph G is a diagonal matrix with rows and
columns indexed by V, in which the (i, i)-entry is the valency of vertex i. An orientation of a graph
G is the assignment of a direction to each edge, so that the edge (i, j) is now an arc from vertex i
to vertex j. We denote by Gσ the graph G with orientation σ. The incidence matrix D(Gσ) of an
oriented graph Gσ is the matrix whose rows and columns are indexed by the vertices and edges of
G respectively, such that the i, j entry of D(G) is equal to 1 if the edge j is incoming to vertex i,
−1 if edge j is outcoming from vertex i, and 0 otherwise.
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The symmetric matrix defined as:

L(G) = ∆(G) − A(G) = D(Gσ)D(Gσ)T

is called the Laplacian of G and is independent of the choice of orientation σ. It is known that the
Laplacian matrix captures many topological properties of the graph. Among those, it is the fact
that L is always positive semidefinite and the algebraic multiplicity of its zero eigenvalue is equal to
the number of connected components in the graph. The n-dimensional eigenvector associated with
the zero eigenvalue is the vector of ones, 1n. If we associate each edge with a positive number and
form the diagonal matrix W with rows and columns indexed by the edges of G, then the matrix

Lw(G) = D(Gσ)WD(Gσ)

is a weighted Laplacian of G. The weighted Laplacian also enjoys the above properties.
In what follows, we will use graph theoretic terminology to represent the control interconnections

between the agents in the group. The connectivity properties of the resulting graph will prove
crucial for establishing the stability of the flocking group motion.

IV. Control Law with Fixed Topology

In this section we will refine the acceleration input of (3) into specific expressions for the compo-
nents ari

and aθi
. Then, angular momentum preservation arguments for the group of mobile agents

will be used to derive the dynamics of the heading angles. This forms the starting point of the
stability analysis that will follow in the next section.

To represent the control interconnections between the agents we use a graph. In this graph, each
vertex corresponds to an agent. The edges capture the dependencies of the agent controllers on
the position and orientation of other agents. Whenever two vertices are adjacent, this means that
the control laws of these agents depend on each other’s configuration. Adjacency in the graph will
thus induce a neighboring relation between agents. In Part II, this neighboring relation will also be
associated with physical adjacency.

Definition IV.1 (Neighboring graph) The neighboring graph G = {V, E ,W} is a labeled graph
consisting of

• a set of vertices, V, indexed by the agents in the group,
• a set of edges, E = {(vi, vj) | vi ∼ vj for vi, vj ∈ V}, containing unordered pairs of vertices
representing neighboring relations, and
• a set of labels, W, indexed by the edges, and a map associating each edge with a label
w ∈ W, equal to the inverse of the squared distance between the agents that correspond to
the vertices adjacent to that edge.

Assumption IV.2 The neighboring graph, G, is connected.

Since G is constant with respect to time, the above assumption ensures that G will remain
connected for all time. By driving the orientation of each agent to the (weighted) average of the
headings of its neighbors, the group achieves flocking behavior. Collision avoidance and group
cohesion are established using an artificial potential field that is dependent entirely on the relative
distances between the agents. For each agent i define an artificial potential function Vi that depends
on the distance between i and its neighbors:

Vi ,
∑
j∼i

Vij(‖rij‖).
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Fig. 2. The artificial potential between two vehicles.

Any potential function Vij(‖rij‖) can be used, provided that it is symmetric with respect to rij

and rji. One possible choice could be:

Vij(‖rij‖) =
1

‖rij‖2 + log ‖rij‖2 ,

giving rise to a potential function that is depicted in Figure 2. The control law ai is then:

ai = −∇ri
Vi + aθi

, (4)

where aθi
is given as:

aθi
= −

∑
j∼i

θi − θj

‖rij‖2 (ẑ × vi). (5)

From preservation of angular momentum for the system of agents we have:

N∑
i=1

ri × v̇i =
N∑

i=1

ri × (−∇Vi + aθi
)

=

N∑
i=1

ri × aθi
−

N∑
i=1

∑
j∼i

rij ×∇Vij

= −
N∑

i=1

ri ×
(∑

j∼i

θi − θj

‖rij‖2 (ẑ × vi)

)
(6)

since rij and ∇Vij are collinear. Equation (6) implies that from the angular momentum point of
view, the system of interacting agents is equivalent to the one where only the alignment forces are
exerted. This fact is to be expected since it is known that “internal forces” (like the potential field
forces) in a system of particles do not contribute to the angular momentum of the system. Since
these forces are exerted in a direction normal to the agents velocities, we can rewrite (6) using the
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acceleration component associated with them

N∑
i=1

ri × (ωi × vi) = −
N∑

i=1

ri ×
(∑

j∼i

θi − θj

‖rij‖2 (ẑ × vi)

)
⇔

N∑
i=1

ωi(ri · vi) = −
N∑

i=1

∑
j∼i

θi − θj

‖rij‖2 ẑ(ri · vi) ⇒

N∑
i=1

(ri · vi)(θ̇i +
∑
j∼i

θi − θj

‖rij‖2 ) = 0

Viewing the last expression as a bilinear form in ri · vi and (θ̇i, θi) and considering its kernel,

θ̇i = −
∑
j∼i

θi − θj

‖rij‖2 (7)

Consider now the following positive semi-definite function:

Vt =
1

2

N∑
i=1

(Vi + vT
i vi + θ2

i ) =
1

2

N∑
i=1

(
∑
j∼i

Vij + vT
i vi + θ2

i ).

Due to Vi being symmetric with respect to rij and the fact that rij = −rji,

∂Vij

∂rij

=
∂Vij

∂ri

= −∂Vij

∂rj

, (8)

and therefore it follows:
d

dt

N∑
i=1

1

2
Vi =

N∑
i=1

∇ri
Vi · vi.

Let Ω be the set defined as:

Ω , {(rij, vi, θi) | Vt ≤ c, i, j = 1, . . . , N},
which is nonempty for a sufficiently large choice of c, and closed by continuity of Vt. It is also
bounded, because boundedness of Vt implies boundedness of all Vij , which in turns implies the
boundedness of every rij , since Vij increases monotonically with rij . Bounds for vi follow trivially
and θi is always bounded in [−π, π].

Proposition IV.3 Consider the system of N mobile agents with dynamics (1) with initial con-
ditions in Ω. When the agents are steered using the control laws (4), then their heading angles
converge to some common value and the distances between them are stabilized to a configuration
where the group potential energy, Vt attains a minimum.
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Proof: Taking the time derivative of Vt, we have:

V̇t =

N∑
i=1

∇ri
Vi · vi +

N∑
i=1

vT
i ai +

N∑
i=1

θiθ̇i

(4)
=

N∑
i=1

∇ri
Vi · vi +

N∑
i=1

vT
i (−∇ri

V T
i + aθi

) +
N∑

i=1

θiθ̇i

(5)
=

N∑
i=1

vT
i

(
−
∑
j∼i

θi − θj

‖rij‖2

(
ẑ × vi

))
+

N∑
i=1

θiθ̇i

=

N∑
i=1

θiθ̇i. (9)

Expanding (7) we obtain:

θ̇i = −
∑
j∼i

θi

‖rij‖2 +
∑
j∼i

θj

‖rij‖2

so that (9) can be written as:
V̇t = −θT Lwθ,

where Lw is the weighted Laplacian of the neighboring graph G. The weight on each edge is the
inverse squared distance between the agents at the vertices adjacent to the edge. Matrix Lw is
positive semidefinite and since G is assumed connected, the only eigenvector associated with the
zero eigenvalue is the N dimensional vector of ones, 1N :

1N , (1, . . . , 1︸ ︷︷ ︸
N

)T .

Since V̇t ≤ 0, Ω is positively invariant. Applying LaSalle’s invariant principle on (1) in Ω we
conclude that all trajectories converge to the largest invariant set in {(rij, vi, θi) | V̇t = 0, i, j =

1, . . . , N}. Equality V̇t = 0 holds only at configurations where all agents have the same constant
heading, θ1 = · · · = θN = θ̄. Let Sθ be the set where all orientations are the same:

Sθ , {(r1, θ1, . . . , rN , θN) | θ1 = · · · = θN = θ̄}.
In this set, we have:

tan θ̄ = k =
ẏ1

ẋ1
= · · · ẏN

ẋN
.

Differentiating ẏi

ẋi
= k we get:

d

dt

(
ẏi

ẋi

)
= 0 ⇒ ÿi

ẍi
=

ẏi

ẋi
= k =

ayi

axi

=
(∇ri

Vi)y

(∇ri
Vi)x

.

This implies that the potential force on i is aligned with its velocity. We distinguish two cases:
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1. Case: −∇ri
Vi · vi ≤ 0. If we take the function Vvi

= 1
2
vT

i vi, then we see that V̇vi
=

viv̇i = −∇ri
Vivi ≤ 0. The dynamics of vi is now v̇i = ai = −∇ri

Vi, which implies that

vi will converge to the largest invariant set in Svi
= {(ri, vi) | V̇vi

= 0}. Since ∇ri
Vi and

vi are aligned, Svi
contains configurations where either ∇ri

Vi = 0 or vi = 0. The latter
configurations are not invariant, unless ∇ri

Vi = 0, because v̇i = −∇ri
Vi. Therefore, the

system will converge to configurations where −∇ri
Vi = 0 which correspond to minima of the

artificial potential of Vi.
2. Case: −∇vi

Vi · vi > 0. Then the time derivative of the artificial potential for i will be
V̇i = ∇ri

Vivi < 0, which means that Vi is monotonically decreasing, and eventually reach one
of its minima.

In any case therefore, the system converges to a minimum of
∑N

i Vi.
Collision avoidance is guaranteed since in all configurations where rij = 0 for some i, j ∈

{1, . . . , N}, the function Vt tends to infinity implying that these configurations lay in the exte-
rior of any Ω with c bounded.

V. Simulations

In this Section we verify numerically the stability results obtained in Section IV. In the simulation
example, the group consists of ten mobile agents with identical second order dynamics. Initial
conditions (positions and velocities) were generated randomly within a ball of radius R0 = 20[m].

Figures 3-6 and 7-10 give snapshots of the system’s evolution, starting from random initial condi-
tions. In the Figures, the position of the agents is represented by small red circles. The yellow circle
around each agent marks its sensing neighborhood, which is selected sufficiently large to ensure that
the graph is connected at all times. The paths followed by the agents as they move under control
laws (4) are shown by green curves.

Figures 3-6 depict the case where the neighboring graph is complete; the motion of each agent is
affected by the motion of all other agents. This is a special case where control interaction between
the agents is strongest. Figures 7-10 show that flocking motion can still be established for incomplete
neighboring graphs. In this scenario, each agent has constant subset of its flockmates as neighbors.
The interconnection topology was selected in random and remained fixed throughout the motion.

Simulation verifies that in all cases the system converges to an invariant set, that corresponds to
a tight formation and a common heading direction. The shape of the formation which the group
converges to, is determined by the artificial potential function.

VI. Conclusions

In this paper we demonstrated how a group of autonomous mobile agents, can be controlled so
that it exhibits a cooperative group behavior known as flocking. Flocking requires all the agents to
have a common heading and stay close to each other while avoiding collisions. We have modeled
flocking and introduced a control scheme that establishes flocking by imposing a fixed topology
of interconnections between the agents. The case where this control scheme imposes a dynamic
interconnection topology is treated separately in the second part of this paper.

Flocking was shown to be asymptotically stable motion for the closed loop system. The stability
analysis was based on LaSalle’s invariant principle and was facilitated by known results from alge-
braic graph theory. The results of this analysis seem to be in agreement with recent findings [11] and
suggest that flocking motion can also be established in groups of agents with dynamics, enhanced
with collision avoidance capabilities.
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Fig. 3. Complete graph: initial configuration.
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Fig. 4. Complete graph: converging to a common
heading.
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Fig. 5. Complete graph: approaching a potential
energy minimum.

0 10 20 30 40 50 60

−20

−15

−10

−5

0

5

10

15

20

25

Fig. 6. Complete graph: steady state.

These results seem to be suggesting that it is possible to coordinate multi-agent systems with
non-trivial dynamics, using decentralized schemes which combine individual agent properties in
non-obvious ways to obtain an aggregated group behavior. The decentralized nature of such control
schemes raises hopes for scalable, novel control designs in large scale multi-agent systems.
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