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Abstract

In many applications, robots were viewed as a machine. This has
resulted in interaction and actuation which is characteristic for
machines. When constructing adaptive LEGO robots, we take
another view, namely that the robot should resemble ahuman (or
ahbiologcal creature) rather than a machine. This has implication
on the interaction, the actuation and the control of the robot.
Here, | will describe how the robot-as-human approach is in-
vestigated in a number of LEGO Mindstorms robot appli cations.
These include making facial expressions, which alows a LEGO
robot to expressinternal "moads”’, and thereby we might achieve
a better human-robot interaction. Ancther gpplication is the
Adaptive LEGO Pet Robot. The Adaptive LEGO Pet Robot's
control is based on a modular behaviour system, where anumber
of the modules are evolved neural networks. Further, the
Adaptive LEGO Pet Robot has a number of internal drives such
as restlesaess and hurger, which dlow the robot to react on the
internal drives. The human-robot interaction is facilitated by
allowing the human to train the LEGO pet robot (rather than to
program the robot) to make asociations between spoken words
(via speech recognition) and evolved behaviours. The Adaptive
LEGO Pet Robot is an example of scaling up evolutionary
robotics to complex behaviours by combining evolutionary
robotics with behaviour-based robotics.

1. Introduction

Often, when constructing robots, engineers and roboticists tend
to take the view that robots should be like machines. This view
seams to stem from the view that a robot should be adevice on
which we, as users, possess full control. We can call this a
robot=machine view on robotics, since it leads roboticists to
think of robots as machines, because, traditionally, we have full
control over machines. The robot=machine view influences both
the way in which we project robotic systems, the way we build
robots, and the way in which we program robots. When
projecting a new robotic system, we think of a new machine-
application and a scenario where we, as users, have full control
over each single action of the robot(s) in the system. For
example, we would view an assembly line as a suitable place for
a robotic system, because we have full control over the
surroundng environment and can make arobot with machine-
like ations to perform seguences of actions that are fully
controll ed. With knowledge about everything that happens in the
surroundng environment (e.g. speed o the asembly line, the
shape and size of the objects on the assembly line, etc.), we can
use inverse kinematics to calculate how the robot shal move in

order to fulfil the task that we have in mind. In scenarios like
this, industrial robots (which are traditionally ingtances of the
robot=machine view on robotics) are successul. However, as
mentioned above, the success is fulfilled when we have full
control over the environment. Unfortunately, thisis often not the
case. A simple, but neverthdess very illugtrative, example is
Chaplin's character sketch of a machinelike worker a an
assembly line, who cannot keep up his performance when the
speed of the asembly line suddenly increases. Chaplin's
machine-like “robotic” behaviour is pre-programmed to have a
specific, machine-like sequence of actions, and it cannot change
adequately in response to the change in the ewironmenta
conditions.

Another view, which we would like to promote here, is the
robot=human view on robotics'. Accordi ng to this view, robots
should be like humans (or biological systems) rather than like
machines. If we take the robot=human view, we ae forced to
make robots that are totaly different from the traditiona
industrial robots, since humans do not have machine-like
actuators, machine-like sensors, machine-like interaction with
the environment. Further, humans are not pre-programmed to go
through a specific sequence of actions. Instead, humans have soft
motions and their control is based on the interaction with the
surroundng environment. Therefore, when taking the
robot=human instead of the robot=machine view on robotics, we
have to change both the way we project, build and program the
robot systems. For instance, we should try to model the way
humans interact with the surroundng environment through soft
(and not machine-like) actuation, through vision and sound, etc.
Importantly, we learn from humans that adaptations to changes
in the surrounding the environment are essential for the
“success’ of humans. In Chaplin’s example, a more human-like
scenario would al ow the worker to change his behaviour when
the environment changes instead of having to go through the
same sequence of actions over and over again.

In order to study the robot=human view on robotics, we have
performed a number of robotic experiments. Firgt, we lodk at the
interaction between robot and human. A meaningful interaction
between an autonomous robot and a human demands that the
human can interpret the intentions and, for example, the internal
state of the autonomous robot. In section 2, we look at

! We could also call this a robot=biological system view on
robotics. The only reasson not to do so is that the term
robot=human seams to gve better asciations.



perception and understanding of emotions, and communication
of emations in a LEGO Mindstorms robot model with facial
expressions and sound processing. Secondly, in section 3, we
look at the interaction between human and a more complex robot
model, namely an adaptive LEGO pet robot. The adaptive LEGO
pet robot is alowed to learn from humans and the situations in
the surrounding environment, which causes emergent behaviours
to emerge in the pet robot. The work illustrates the possibility to
combine evolutionary and behaviour-based approaches to
achieve more complex control systems capable of self-adaptation
and learning. Section 4 discusses the work on the initia
robot=human experiments, and presents some future directions
of research in this field. It should be noted that the work
presented here is work in progress, which means that part of the
work is presented as discussion (especialy section 2).

2. An Empathy and Sympathy Robot M odel

When designing robots from the viewpoint of robot=human, the
interaction between the robot(s) and the user becomes essentid.
We learn from the study of humans that the ability to express
and communicate internal states is an essential characteristic.
There exists a vast number of definitions of emotions, and we
will not go into a discussion of these definitions here, but rather
provide one definition, smply for clarifying what we are talking
about in the following, without trying to claim that this is the
most appropriate definition. Here, we define emotions as a
product of internal state and they are communicated to the
external with (dramatically) changes of externa behaviour.
Theory tells us that humans are able to perceive and understand
emotions, and to produce emotions. Perceiving and under-
standing emotions is known as empathy, and communicating
emotions is known as sympathy. Communication of emotions
seems to be independent of the semantic level related to human
language. For example, the carrier frequency of sound can be
used to communicate and understand emctions. Also, the
repetition frequency of sound can be used to express emotions.
Imagine an agent with a small beeper. When emitting beeps with
low freguency, humans interpret the agent as being in a quiet
state, while when emitting beeps with high frequency, humans
interpret the agent as being in an anxious state.

Figure 1. Expressing internal states with a LEGO Mindstorms
robot. ©Volker Steger, 1999.

We designed a LEGO Mindstorms robot to study empathy and
sympathy as a model for faciliteting robot-human interaction.
The robot is designed to have facia expressions by moving eyes
and mouth, and can express smple sounds (the robot is shown
on figure 1). For sympathy, the simple robot uses light inputs

(two light sensors) and an (internal) drive unit telling the robot to
be active or rest. The light sensors register the frequency of light
changes in front of the robot (e.g. waving with a white piece of
paper) and can gofrom O (no activation) to 1 (high activation).
The activation of the drive unit can gofrom 0 (rest) to 1 (active).
The motor behaviour of the robot (sounds and facial expression)
is a function of the activation of the two units. If the light and
drive units have opposite phase, the robot responds with a high
frequency of bees (e.g. the human user continuoudy waves to
the robot when it wants to rest), and when in the same phase, the
robot responds with alow frequency of beeps.

In the same way, empathy is modelled by not interpreting
semantics, but rather by looking at amplitude and frequency of
the @ommunication from the user as a model of the enctional
state of the communicator. In the smple robot model, the robot
has a light unit and an empathic unit. The empathic unit
activation is an interpreter of the enctional state of an externa
communicator. For ingtance, an agent (child, adult, other robot)
emits light (eg. by waving white paper). The empathic unit
interprets this light. If it reaches a high level, it will be
categorised as an aggressive state of the ommmunicator.

3. An Adaptive LEGO Pet Robot

The example of empathy and sympathy in a robot showed one
aspect of the robot=human view on robotics, but it did not
provide many different kinds of ditinctive behaviours in the
same robot. Our study on an adaptive LEGO pet robot is moving
in the direction of providing a number of distinct behaviours in
the same robot that should interact with humans.

3.1 Related Pet Robot Work

Our work is not the first to use apet robot as a @se study. The
project with the most notable similarity with our project is the
artificid emotiona creature project by Takanori Shibata and
Kazuro Tanie [5] who are focusing on human machine
interaction, where the machine is a pet-like robot in a fur
costume, such as aseal or a ca. The robots have quite cmmplex
mechanics making it possble to interact with humans in various
ways. Emotions are displayed using the actuators in a way that
would be expected from a rea animad of the same kind.
Motivation of the behaviours may be generated through
competition among the emotions of the pet. It seems to have the
basic (or primary) emotions, such as love, happiness, anger, fear
and sadness. These anctions are considered as innate emotions.
Until now the learning capabilities of these aestures are quite
limited, though some secondary emotions seems to ke aquired
through learning from interaction with the environment and
other crestures.

Furby from Tiger Electronics, which is currently a huge
commercial sucecess, isasmall furry robot that is able to tak and
wrigde. It has a number of touch and tactile sensors that makes
it sengitive to human interaction. It has no leaning capabilities,
but a smulated 'leaning algarithm ensures that the @pabilities
of the Furby gradually increase.

The Sony pet robot [6] has until now, almost entirely focused on
the impressive hardware platform, only recently has the work
been lbroadened to implement complex adaptive software.
Currently it is only implemented with a rudimentary behaviour
based system.

The Creatures ftware game from Cyberlife Technology
consists of Albian agents called Norns, who are created using the
opposite approach and are entirely software based [1]. Their
‘brains' are quite mmplex adaptive behaviour based systems that
generate own internal motivations and learn from mistakes. The
software system of the Norns is very interesting and combined
with a alequate hardware it could be an example of an



embodied, situated, emergent and seemingly intelligent robot
that is motivated by its own feelings and interaction with the
environment.

3.2 Adaptive LEGO Pet Robot Overview

We put emphesis on alowing the user to be able to develop
(parts of) the pet robot when interacting with the pet robot.
Again, this approach arises from the robot=human view on
robotics. When a child (or human in generd) is interacting with
apet animal, the dild is not thinking o the anima as a machine
with afixed program, and hence is not considering it possble to
programthe brain o the pet (as with the robot=machine view on
robatics). Instead, the child might be able to train the pet to do
some specific tricks and obey some specific commands. In our
adaptive LEGO pet robot project, we ae therefore trying
develop arobot system that allows such an interaction.

In general, our pet robot project ams et illustrating how the
evolutionary and behaviour-based approaches can be combined
to achieve more complex control systems capable of self-
adaptation and learning, as indicated by Lee Halam, and Lund
[3]. Our first steps towards creating a believable aitonomous,
dog type, pet robot and a number of experiments with this pet
robot show the adaptation and learning ability of the agent.

Basic behaviours are creaed using evolution of neural networks
in a simulated environment that runs on a parald evolutionary
system, the behaviours executed by the evolved neura networks
are tested an a physical robot, and implemented in the behaviour
based system. The more simple behaviours, such astail wagding
for example, are hand coded The behaviour based system mekes
the robot able to use and combine the evolved behaviours
according to the arrent situation, which depends on sensory
input, what it has learned in its life so far, and the internd states,
such as hurger and restlessess. Thus learning from humans and
the dituations in the surroundng environment causes emergent
behaviour to emerge in the robot, something that is not normally
done by behaviour-based control systems. Figure 2 shows a
schematic drawing dof the robot.
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Figure 2. Schematics of the pet-robot. ©LEGO Lab, 1999.
3.3 Integrating New Hardwar e with LEGO Mindstorms

We choose to use the LEGO Mindstorms robotic kit as the
hardware platform for the aaptive pet robot, because this
robotic kit allows fast prototyping, flexibility in the robot
morphology (which we view as essntia to robotics [4]), and
easy integration of new hardware. For instance, for the alaptive
pet robot, we made anumber of new sensors available for the

LEGO Mindstorms roboatic kit, including dgital compass nsor,
bend sensor, directionad hearing sensor, and speech recognition
(through communi cation with host compuiter).

The LEGO Mindstorms control unit (RCX) is constructed to
work with the specially designed LEGO sensor types. The
LEGO sensors can be rea in two modes, active and passive.
Active sensors are sensors that require arrent, such as light
sensors and rotation sensors. Passve sensors require no supply
current to generate the response, a touch sensor, which basically
is a resistor that can be ether connected a disconnected, is a
passive sensor. When aninput port on the RCX is configured for
an active sensor the voltage is a little higher than when it is
configured for a passive sensor, about 7 vdts for active ad 5
volts for passive, furthermore it is posdgble to draw a limited
current, about 15 mA, from a sensor input that is configured
active, and thus it is possible to drive some smple dectronics
with theinput port.

Our wish was to wse digita sensors with RCX. It should be
posshleto wse these digital sensors like the other sensor types on
the RCX, meaning that the digital equipment should be plugged
directly onto the RCX. The converter must be a digita to
analogue converter; the analogue signal received by the RCX is
then again converted to adigital signa inside the RCX.

All the sensors act as resistors. The LEGO Dacta touch sensors
have an infinite resistance when not pressed, and a fixed, low,
resistance when pressed. The temperature sensor has a variable
resstance depending on the temperature. This means that a
converter must transform a digital signal into some resistance.
The generd ideaisto have eah bt from the digitd equipment
open a transistor connected with a resistor. If the i'th hit of the
digital input is turned on, the resistance should be R;, which
means that if bits b are turned o, then resistancewill be:

O 1
Rtotal—ﬁblRi E

It was decided to implement a 6 kit converter that should gve a
readout between app. 0 and 10 if it was connected to an RCX
input that is interpreted as a light sensor, which is the response
from an input port configured to drive an active sensor. When an
input on the RCX isinterpreted as a light sensor it is possble to
read the 10 kit raw value from the sensor hardware. The 6-bit
digital converter is showninfigure 3.

Do D1 D> D3 D4 Ds
R1 R3 Rs R7 Ro Ru1
R2 pex R rex Re prex Rs rex Rio pex Ri2 pex
GND

Figure 3. The 6-bit digita converter. ©LEGO Lab, 1999.

The poar range and resolution of the Lego light sensors made it
necessary to construct a new sensor type that made it possible to
determine the direction to some source in the ewironment.
When working with vaice recognition it was logical to make the
robot determine the direction to the source of the sound.

The first set-up used two threshold microphones to detect the
direction to a sound in front of the microphones. The left/right
detection of this system based an a LEGO construction described
in [2] was extended with an oscillator and a 4 bit binary counter
to determine the delay between the triggering o the two
microphones. Figure 4 is adiagram of the drcuit. The readout of



bits 0 to 2 contains the delay between the microphones, bit 3 is
set if the left microphone was triggered before the right, so only
the three lowest bits in the wunter are used. The distance
between the microphones determines the longest period that can
pass between the two microphones triggering, namely if the
sound arrives from the extreme left or the extreme right. The
counter is 4 ht, but only the three lowest are used, meaning that
if the oscillator has a period of 80 ps, the longest period in the
set-up shown in Figure is 7*80pus = 0.56ms, which gives aidea
distance between the microphones of 19 cm. to exploit all of the
3 hits.

It is of courseimportant that the ears can be used in dfferent set-
ups, with varying distance between the microphones. In Figure 4
the oscillator can be adjusted from 40 psto 100 ps, which means
that the microphones must be placed at a distance from 9.5 cm to
24cm.

Threshold Threshold
Microphone Microphone

Timer L Timer
800 ms. 800 ms.

B_‘ EJ_‘_I i R ’—D'

=1
u]
TRIG;

CLK_UP Data Out
0se — 4BitCount  [————=
40100 H Seconds DO-D2

: : Data Out
D3

Figure 4. Determine the direction to a sound source in front of
the microphones. ©LEGO Lab, 1999.

Further, we nstructed bend sensors and dgital compass
sensors for the LEGO Mindstorms RCX, as shown in figure 5
and 6 The ears described above makes it posshble for the robot
to be dtentive to sounds in the environment, however the
communication between human and robot will be limited if the
only thing that can be interpreted by the robot is the direction to
the source of the sound. Making the robot able to understand a
few words increases the posshilities of interactionimmensely; it
will then be possible to issie verbad commands to the robot,
which then will be able to react upon them.

The LEGO robot has a very low bandwidth on the input ports,
they are only sampled every 3 ms, which makes it impossble to
sample and analyse the sound drectly. A hardware solution with
amicrophone and a chip with speech recogniti on capabilities can
ealy be interfaced with the RCX to owercome these limitations.
The speech recognition used in this project is the HM 2007 based

circuit from Images Co. However, because this system (asis the
state of the arts in speech recognition) is not very noise tolerant,
we cannot placeit on the robot, but have to speak very closeto a
microphone. Therefore, we cose to run the speech recognition
viaahost computer.

Figure 5. Two bend sensors mounted in a LEGO brick. ©LEGO
Lab, 1999.

Figure 6. Digital compass ®nsor and battery. The digita
compass is atached to a LEGO Mindstorms RCX input channdl.
©LEGO Lab, 19%.

3.4 TheBehaviour Engine

The behaviour engine is a framework for designing and
implementing a system giving aur robot the following proper-
ties:

» Action (behaviour) selection based on internal states and
external input

»  Emergent behaviours based on a set of behaviour primitives
*  Leaningby experience

* A high degree of sdf-sustainability

*  Adaptivein adynamic environment

» Easily scaable

Our behaviour engine is illustrated on figure 7. An urderlying
idea of the construction of the behaviour engineitisthatisto be
built from (partly) independent modules. Each module should be
constructed in such a way that it can be thoroughly tested prior
to the insertion into the system.

The Reinfor cement Generator

The reinforcement generator is responsible for generating a
reinforcement signd using the airrent and past sensor values as
input. The older the input values are the less weight they carry.
The reinforcement generator is constructed like a smple
perceptron using a pseudo tapped delay line of sensor values as
input.

An example of the use of training is the case of a pet robot that
has been taught that the tone of word shame is positive, i.e. the
reinforcement generator produces a positive reinforcement signal
if thisword is gpoken (given asinput to the reinforcement gene-
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Figure 7. Behaviour engine with memory neural network.
©LEGO Lab, 19%.

rator). By purnishing the pet robot every time this association is
made it is possible to change the positive asociation of the tone
of the word shame (which is obviously a misinterpretation by the
pet robot) to something negative (which is morein line with the
common interpretation of this word). This means it over time
will be possble to change the meaning o the sensor inpt i.e.
the robot can ke brought up to behave in the way it is supposed
to. The weights of the perceptron are trained with ursupervised
learning.

Behaviour Set

The notion of abehaviour set isto link a set of sensor values and
state values together with a score and the behaviours to be
executed. Figure 8 shows the basi ¢ behaviour set being described
in the following. The fields denoted by the S’ s are the sensor or
state value fields. The Bj fields hold the information about which
behaviours to execute if the behaviour set is selected. The
number of B fields corresponds to the number of behaviour
classes available. The reason for grouping the behaviours into
classs is that orthogmality on the actuators is needed meaning
that two behaviours, onein Bp and the other in Bg, cannot share
the same actuators. In eech o the behaviour classesthere ae two
additional behaviours: the empty behaviour and a "wildcard"
behaviour. The empty behaviour indicates that no behaviour
from that particular class is to be executed and the "wildcard"
behaviour indicaes to continue eecuting the behaviour from
this class slected in the prior behaviour set. Finally the Score
field hold the arrent score of this behaviour set, a value used to
keep track of when to remove abehaviour set if it has not been
used for awhile.

‘SO‘Sl‘ ...‘Si‘BO‘Bl‘... ‘ Bj‘Score‘

Figure 8. A basic behaviour set. Sn (n =[0,i]) denotes the sensor
and state values and Bn (n = [0,j]) denotes the behaviours.

Each actuator has a series of possble behaviours it can
implement independently of the other actuators, enabling the
credtion of emergent behaviours. It isimportant to noticethat the
emergent behaviours are dependent on the associations made
between sensor values and the user supplied reinforcement

signals in the reinforcement generator. The robot pet we ae
working on has the following groups of actuators that can work
independently from one another:

e Whed control

e Tail control

e Hea control

*  Voice control

The way the behaviour set is designed leares the implementation
details of each of the behaviours open. This mean that one
behaviour may be implemented by a neural network while
another may be implemented by a few lines of deterministic
code.

Each of these behaviours can be developed and tested
independently of the system. A neura network implementing an
exploration behaviour can be evolved and tested in the simulator,
put on a specially designed neura network chip or smulated in
software where it can be tested once againinred life and finaly
integrated into the behaviour system.

Behaviour Set Sdlector

A system is needed for selecting the gpropriate behaviour set.
This system is implemented in the behaviour set selector
module. This module ranks the behaviour sets available on the
basis of the arrent sensor and state values of the behaviour set.
The find rank of a behaviour set is determined by the distance
between the aurrent sensor and state values and the values gored
in the behaviour set. What behaviour set to select depends on the
rank unless the airrent active behaviour set is among the dite of
the highest-ranking sets. To avoid a constant shift in the active
behaviour set the one currently executing is favoured i.e. it has a
higher probability of being selected even if it has a lower rank
than the highest-ranking behaviour set. This higher probability
decreases over timeto allow a more graduate shift in behaviour.
We keep track of the last few selected behaviour setsto store the
information about the past sequences of behaviour sets. Later on
when a few extension are added it will enable the system to learn
well performing sequences of behaviour sets i.e. seguences
leading up to positive reinforcement. Poorly performing
sequences i.e. sequences leading up to regative reinforcement
will on the contrary be punished by the system. This will result
in the aility of the system to acquire various squences of
behaviours over time but ill the system has the aility to
introduce uncertainties making the robot lodk likeit has a will of
its own.

Update Score

Whenever a reinforcement signal is generated the behaviour set
currently selected gets its score updated. The function used to
upckte the score is a function of the reinforcement signal, the
current score of the behaviour set and the age of the behaviour
set. Thusif a negative reinforcement signal is received the score
is decreased and conversely increased if the reinforcement signa
is positive.

Since the purpose of the score is to keep track of behaviour sets
currently not executing, the score of behaviour sets currently not
executing is reduced by some fixed value every n'th clock tick.

Memory Neural Network

Each time the behaviour sdector is called upon to select a new
behaviour set, the memory neural network is consulted. It is
asked to edtimate the reinforcement signa it might recave as a
result of executing the behaviour set. In case the neural network



implementing the memory module is a smple feed forward
network, it should have as input a brief history of the past
behaviour sets selected and their matching sensor and gtate
values.

Evolution of Behaviour Sets

We look upon the set of behaviour sets from an evolutionary
algorithm point of view. This means tha the set of behaviour
sets is seen as a populaion of behaviour sets on which genetic
operators like mutation and crossover can be applied. By using
this approach we wish to obtain a high degree of emergent and
adaptive behaviour that it would be hard to program explicitly.

State Variables

The state variables are split into two groups. The first group of
state variables is classified as emotions and the second group as
needs. Suggestions to which emotions and needs we can add to
the systemis given in the following:

*  Hunger (needs)

*  Sleep (needs)

*  Anger (emotions)

*  Sadness (emotions)

*  Restlessness (emotions)

At each signal received by the externa clock the values of the
state modul e are updated. The values gradually change over time
to reflect the ongoing change in the metabolic leve. As an
example, the need for deep varies during the day and night on a
24-hour scale. Other values in the state module are changed
dependent on the reinforcement signal generated on basis of the
sensor values. These changes are not time dependent but depend
on the interaction with the user and the surrounding
environment.

To each need and emotion is attached one or more control
variables used by the behaviour engine for various purposes
during eg. the selection of behaviour sets. These control
variables give the personality of the pet robot. Thus changing the
value or one or more of these variables can vary the personality
of the pet robot adding an extra dimension to the already existing
multiplicity of the behaviour engine. Since the personality of the
pet robot is comprised by a set of control variables, it is possible
to make alibrary of persondities giving the user the opportunity
to change the personality of the robot at will.

4. Experimental Results

Some of the behaviours, such as sit down and waggle tail are
hard coded into the system and will not be discussed. The more
complex behaviours have been evolved using a smulator, which
we first evduated to be able to cross the gap between smulation
and reality on a Kheperarobot task. In the following section the
results of the evolutionary processes will be presented, followed
by the results of those behaviour inserted in the behavioura
engine. Experiments show how the robot reacts when subjected
to different kinds of reinforcement, how it learns to obey verbal
commands, and how it acts autonomously when interna needs
such as the need for food arise. All documentation shown is
shots from the simulation environment; video sequences of the
behaviour of the physical robot can be found at:

http://legol ab.dai mi.au.dk/Video

All behaviours are evolved in the same environment, see Figure
9. The arenaiis 5 times 3 meters, which corresponds to the size of
an office in our institute. Within the room two L-shaped

obstacles have been placed. All obstacles are surrounded by
white paper taped to the floor. This means that the robot can use
the vertically placed light sensors to obtain information about the
environment. A green area in the northwest corner of the room
marks the home spot, the place where the dog-basket is placed.
Using this room might make the robots converge to a behaviour
that is dependent on the layout of the room. Thisis of course the
case when the homing behaviour is evolved, but in the case of
exploration and food seeking, the diversity in the objects should
make the evolved control systems able to work in awider variety
of environments.

When evolving a behaviour, the result can be dependent on the
initia, randomly generated, population and the random spots in
the environment on which the evaluations start. Therefore, to
study robustness, each behaviour was evolved ten times.
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Figure 9. The environment. ©LEGO Lab, 199.

Furthermore ea@h experiment has been conducted twice using
two different types of neural networks, a smple feed-forward
network, and a recurrent network. We have succes<ully evolved
exploration, homing behaviour, and food-seeking behaviour, see
for instance homing behaviour using a recurrent neural network
and corresponding fitness curve on figure 10 and 11.
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\

Figure 10. Homing behaviour using a recurrent network. The
number 3 indicates that the pet robot reaches the “basket” three
times. ©LEGO Lab, 1999.
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Figure 11. The fitness graph (best and average fitness) leading to
theindividua of Figure 10. ©LEGO Lab, 199%.



The behaviour engine was used in training an individua, to learn
the mommands for 3 dfferent behaviours, and later to use those
newly learned behaviour in the ewvironment. The behaviours
themselves were trained wsing the genetic system and the
simulator. The evolved neural networks from the traininy
sessions were coded into the execute-behaviour module. In
addition to those, it gat a sitting behaviour, that is hand coded,
and 2 unefined behaviours, al owing the pet robot (dog) to mind
it's own business. At first, the dog has no knowledge of any
associations between the ommands, and the behaviours, and
some teaching is therefore required. This is done by purishing
the dog, when it is doing something wrong, and hence one tries
to allow the robot to make asociations between commands and

behaviours.
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Figure 12. The robot dog cets the mmmand Explore and
explores the environment with a drcling behaviour. When the
command Go Home is sid, the robot dog heads for its home.
@EGO Lab, 1999.

Figure 12 shows an example of the robot that has been trained to
some degree moving around in its environment. First it is given
an Explore command, and it starts to explore the environment by
circling behaviour. Then it is given the ommand Go Home, and
it starts heading for the north west corner of the room where its
basket islocated. As can be observed at the bottom of the figure,
the restlessness is a a minimum, the homing behaviour is also
considered to be eciting and thereby reducing the restlessness
(although not as quick as the exploration behaviour, which is
considered to be more exciting). The hunger isincreasing, but is
still not near a critical level for the dog. Unfortunately, space
limitations do not dlow us to document al the experiments and
replicaions in a more detailed manner. This will be done
elsewhere,

5. Conclusions

We have described the robot=human view on robotics, and
shown briefly how it influences the robot agppli cations by putting
emphasis on a human-like interaction with the surroundng
environment (e.g. by expressing sympathy and empathy in an
emotional robot). The emphasis on human-like interaction aso
directs the pet robot project to consider adaptiveness as the
major feature to develop.

The pet robot project shows, as one of the first examples, that it
is possible to scde up evolutionary robotics to more mplex
behaviours than were traditionaly shown. This is achieved by

using the divide-and-conquer principle of behaviour-based
systems, instead o the traditional monoalithic approach in
evolutionary robotics.
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