Neural Mapsfor Mobile Robot Navigation

Michail G. Lagoudakis
Department of Computer Science
Duke University
Durham, NC 27708
ngl @s. duke. edu

Abstract

Neural maps have been recently proposed [4] as an alterna-
tive method for mobile robot path planning. However, these
proposals are mostly theoretical and primarily concerned
with biological plausibility. This paper addresses the appli-
cability of neural maps to mobile robot navigation with fo-
cus on efficient implementations. It is suggested that neural
maps offer a promising alternative compared to the tradi-
tional distance transform and harmonic function methods.
Applications of neural maps are presented for both global
and local navigation. Experimental results (both simulated
and real-world on a Nomad 200 mobile robot) demonstrate
the validity of the approach. Our work reveals that a key is-
sue for success of the method is the organization of the map
that needs to be optimized for the situation at hand.

I ntroduction

Mobile robot navigation involves four basic subproblems:
(1) Mapping, (2) Localization, (3) Path Planning, and (4)
Motion Control. The complexity of addressing navigation at
one level motivates a common practice of decomposing the
problem hierarchically into local (sensory-based) and global
(map-based) navigation. Local navigation focuses mostly
on the last two subproblems, whereas global navigation fo-
cuses on the first three, path planning being their common
ground.

Distance transform [5] and harmonic functions [2] are the
most common methods used for path planning. Distance
transform is a fast algorithm that unfortunately fails to pro-
duce smooth paths. Harmonic functions have the advantage
of producing smooth paths, however at a prohibitive time
cost. This paper contributes to the use of neural maps as a
tool that “hits’ the middle ground and addresses its efficiency
in real-time implementations. We claim that neural maps
can be implemented in practice to produce smooth paths in
short times. Moreover, we show how neural maps can be
used for both global and local navigation, if adapted to the
particular navigation circumstance. Simulation results are
presented for the global case and results on a Nomad 200
mobile robot for the local case. Detailed description of our
work and extensive discussion can be found in [6].

Anthony S. Maida
Center for Advanced Computer Studies
University of Southwestern Louisiana
Lafayette, LA 70504
mai da@acs. usl . edu

Neural Maps

A neural map is a “localized neural representation of the
signals in the outer world” [1]. Signals from some space
X are mapped through a mapping ¥ on a neural field F'.
Fis a recurrent neural network, where the dynamics define
lateral inhibitory or excitatory interactions among the units.
Amplification (the mapping offers higher resolution to the
‘critical’ areas of X)) and neighborhood preservation (geo-
metric or functional proximity of signals in X is preserved
as strong connectivity in F") are two important properties
of neural maps. Additionally, the self-organization prop-
erty is a kind of unsupervised learning that adapts the map
dynamically in order to maintain amplification and neigh-
borhood preservation. This combination of representational
and computational mechanisms makes neural maps power-
ful tools in solving problems of practical interest.

The basic processing unit of a neural map is a non-linear
‘integrate-and-fire’ device. A unit 7 is characterized by the
internal input vector V', the weight vector W;, the external
input 8;, the net input u;, the activation function ®() and the
output v;. The net input u; at time ¢ is defined as

ui(t) = Wi x V(t) + 0;(t) = iwiﬂ}j () +6:(t)

The activation function ®() can take several forms and it is
usually a saturating nonlinear increasing function (e.g. sig-
moid or hyperbolic tangent). The way the output of a unit ¢
is updated over time is defined by the system dynamics. For
discrete time, it is

ilt +1) = B(us(t) = B(3 w0y (1) + 64(1)

A large collection of such units (neurons) topologically or-
dered over X consists a neural map. The output (or state) of
the map at any time ¢ is the activation vector V (t).

Neural Mapsfor Global Path Planning

It has been shown [4] that neural maps can be used effec-
tively for path planning. In particular, the mapping resem-
bles the n-dimensional configuration space C of a robot and
the signal X is the current information about the robot’s en-
vironment (free, obstacle and target configurations). The

Figure 1: Connection topologies (left) and nonlinear activa-
tion function (right).

units of the network are distributed over C' implementing
a discrete topologically ordered representation of C'. Thus,
each unit 4 corresponds to a representative unique configu-
ration ¢; of the robot and each possible configuration in C
is represented by the closest representative. The weight be-
tween units ¢ and j reflects the cost of moving the robot from
configuration ¢; to configuration ¢;; the higher the cost, the
smaller the weight. Cost is defined in terms of some cri-
terion to be optimized. The diffusive dynamics of the map
are due to local lateral excitatory interactions and result in a
stable activation landscape over C' that provides a complete
navigation map for the given target(s). A simple steepest
ascent procedure on the equilibrium activation surface from
any initial configuration will return an obstacle-free path to
the (closest) target.

For holonomic mobile robots, C is the 2D plane. In gen-
eral, the units of the map are distributed homogeneously
over C. The topology and number of connections can varry.
Common choices include rectangular or hexagonal topology
with connections from (and to) unit ¢ extended within a lo-
cal neighborhood of units. Examples are given in Figure 1
(left). The common cost in mobile robot navigation is pro-
portional to the Euclidean distance between configurations.
Thus, the weight w;; of the connection between units 5 and
jis
p(ci,cj) =0
0 < pleie5) <r
r < p(ci, ¢j)
where p(4, 5) is the Euclidean distance between configura-
tions ¢; and ¢; and f() is a decreasing function. Common
choices include f(z) = 1/z (our choice), and f(z) =
e~7®". Thus, all connections are excitatory, without self-
coupling and local (within distance r).

The external input (e.g. sensory input) projected on unit ¢
takes the form:

+oo i is atarget configuration at time ¢
0;(t) = { —oco i isanobstructed config. at time ¢
0 otherwise

The activation function (Figure 1, right)

0 <0
Bp(w) = { tanh(fx) 2 >0

defines the diffusive dynamics of the network. Notice that a
target unit will be maximally activated (v;(¢) = 1), whereas

0
Wij = { f(P(CiaCj))
0

an obstacle unit will be deactivated (v;(¢t) = 0). All other
units are not directly affected by the external input; their
activation depends on the units in their neighborhood. The
stability condition for the network is 3 < 1/, where § is
the steepest slope of ®() and A = max{|\;|}, where the
A;’s are the eigenvalues of the connectivity matrix. Intu-
itively, this condition guarantees that the activation of a unit
i will not saturate even if all units in its neighborhood are
maximally activated. Further, it is guaranteed that, for any
combination of targets and obstacles, the map will converge
to a unique stable state [4].

Suppose that all units are updated simultaneously in par-
allel during network evolution. In the absence of any target
units, the network will eventually rest in the zero state, be-
cause the condition above imposes a strict gradual decrease
of activation. When some target(s) is (are) specified acti-
vation spreads out of the target unit(s) in all possible di-
rections, however without overpassing obstacle units. This
wave propagation comes to a steady state, whereby the ac-
tivation of a unit 7 is a measure of the shortest distance
between configuration ¢; and the (closest) target through
an obstacle-free path; the higher the activation, the closer
to the target. A steepest ascent procedure on the equilib-
rium activation surface from any initial position will return
a collision-free path to the target (if such a path exists).

An example is given in Figure 2; the target is near the top-
left corner, the initial position is near the top-right corner,
and there are three wall-like obstacles. A 50 x 50 rectangular
map (r = 1.5, 8 = 0.1) was used.

Efficient Implementation

It is important for real-time applications to minimize the
convergence time of the neural map. A single unit is up-
dated in constant time given the locality of connections. The
model as presented assumes that all units are updated in par-
allel to ensure uniform activation propagation. On a conven-
tional sequential computer the cost for simulating a single
parallel update step is proportional to the total number of
units in the map.

The knowledge of the robot’s initial position can be used
to terminate the evolution of the network before equilibrium
[4]. Activation propagates from the target evenly in all di-
rections. The direction of maximum gradient of the activa-
tion landscape at some unit will not change by the time the
activation front “hits’ that unit. Therefore, network evolu-
tion can be terminated as soon as the activation front reaches
the initial position. This reduces the number of parallel up-
date steps to be proportional to the distance of the shortest
obstacle-free path between initial position and target. Al-
though this is a significant improvement, the bigger cost of
a single parallel update step is not reduced.

The idea is to reject parallel updating altogether. This
results from the observation that the equilibrium state is
unique no matter how the network actually ends up there.
We applied the Rosenberg-Pfaltz algorithm [7] (originally
proposed for image distance transform) that performs se-
quential update rasters over the network. Successive rasters
are applied along the ‘diagonals’ of the lattice structure.
This way activation from a target unit is propagated along

Figure 2: Target and obstacles (left), activation diffusion and equilibrium landscape (middle), and path (right).

the whole diagonal in one raster. By crossing successive
rasters, activation spreads almost uniformly in all direc-
tions and covers rapidly the whole network. Convergence
is achieved in significantly less time. An intuitive exam-
ple here is the function of a paintbrush that distributes an
initial concentration of paint on a surface through succes-
sive rasters in crossing directions. Notice that evolution
can still be terminated early if the pattern of rasters tends
to make propagation uniform and the test for termination is
performed only after the pattern is completed. Such a pat-
tern of four crossing rasters is shown in Figure 3, where the
termination test can be applied every four rasters. The final
path is close to the one derived by the equilibrium landscape.

Figure 3: Pattern of sequential update rasters.

Results

By applying this technique, it was possible to generate
paths in 2D neural maps of sizes 200 x 200, 500 x 500 or
1000 x 500 in less than 10 seconds given a simple arrange-
ment of obstacle configurations. For maps of 50 x 50 and
for any complicated arrangement of obstructed and target
configurations the required time was about 1-2 seconds?.

These time results compare favorably with the times re-
ported in [2] (e.g. 188 seconds) for harmonic function-based
path planning on 50 x 50 grids. Moreover, paths produced
by the neural map are much smoother compared to the ones
in [5] produced by distance transform on similar grids. The
possibility of using interpolation methods to smooth out the
activation landscape offers the opportunity for even better
paths by using neural maps. Finally, the approximations
proposed above are supported by the fact that in a dynamic
environment global path planning takes place repeatedly;
paths change continuously and the notion of optimality be-
comes hard to define.

LAl runs were conducted on a SUN SPARCStation 4.

Neural Mapsfor Local Navigation

A major limitation of global navigation is the requirement
for complete information about the environment. Local nav-
igation uses only the available sensory information to guide
the robot, however without any guarantee for completeness;
even if a path exists, it may not be found. We have found
the neural map method to be very efficient in this context, if
adapted appropriately to account for the sensory and motor
capabilities of the robot. We implemented a complete local
navigation scheme that applies on a common class of mo-
bile robots, namely, wheeled round nonholonomic mobile
robots with range finding sensors (sonars and/or infrareds)
distributed on their periphery.

The Polar Neural Map

The sensory system of the class of robots we consider has a
circular range and the resolution of data points decays with
the distance from the center of the robot. Thus, the robot has
up to date information only for a portion of its configuration
space and this information is not uniformly distributed. This
motivated us to organize (manually) a neural map with a po-
lar topology centered at the robot’s center. The map ‘moves’
with the robot and at any time covers the area of the config-
uration space that is directly accessible through the sensory
system. The distribution of units in the map resembles the
distribution of the sensory data points.

Figure 4 (left) shows the polar map topology. The units
have uniform angular and radial distributions. However, by
changing the radial resolution, the map can capture larger
or shorter areas of the real robot’s surrounding up to a max-
imum radius determined by the sensor capabilities. Each
unit in the map codes a possible position of the robot’s cen-
ter point in the real space. Therefore, obstructed configura-
tions are determined as circular areas with radius equal to
the robot’s radius centered at the sensor’s reading®. Figure
4 (left) shows also the receptive field of a unit which is the
(sub)area of the signal space (sonar returns in our case) that
is being mapped on that unit. As a result, any sonar return
within that area (a circle with radius equal to the robot’s ra-
dius) will characterize that position, and the associated unit,
as obstructed.

The inner and the outer rings of the map cannot be oc-
cupied by obstacles because they have special roles. The

2\We assume the simplest sensor model, where a sonar return
corresponds to an obstacle lying along the main direction of the
beam at the specified distance.

T e

U G

Figure 4: A simple 10x32 polar map (left) and an example
of incremental path planning (right).

inner ring codes the center point of the robot and the robot’s
orientation. The outer ring is used for target direction spec-
ification, in cases where the target position falls outside the
scope of the map. Having the sonar readings mapped and
the target specified on the periphery (or inside the map), the
dynamics of the network spread activation from the target
unit(s) (in fact from outer rings to inner rings) until activa-
tion “hits’ the inner ring. The unit with the highest activa-
tion in the inner ring will determine the angular displace-
ment A¢ from the current orientation and a steepest ascent
procedure along this direction only will determine the radial
displacement Ar. The pair (A¢, Ar) can be considered as a
local subgoal and the cycle is repeated as the robot moves®.
This way paths to the target are built incrementally step-
by-step using only sensory information. Figure 4 illustrates
the idea; five sonar returns from an L-shaped obstacle are
mapped, the target direction is specified as an activated unit
at the periphery, the path of maximum activation propaga-
tion is shown (notice that there is also another path from the
left side which is longer) and finally the displacements (A ¢,
Ar) are displayed.

System Architecture

The complete architecture of our local navigation system is
shown in Figure 5. Each component is described separately
below. Briefly, the overall operation of the system is as fol-
lows: Some higher level component (a global path planner
or a human supervisor) specifies a long-term goal, i.e. a tar-
get position given in polar coordinates with respect to the
robot’s egocentric frame. On the way to the target, the robot
makes use of its odometry to measure its progress and up-
date the position of the target with respect to its own ego-
centric frame of reference. The current velocities are used
to predict the configuration of the robot at the end of the
current control step and that position is taken as the cur-
rent robot position. The current sonar readings are stored
in the sensor short-term memory and all the contents of the
memory are mapped on the polar neural map, using the pre-
dicted position as reference. The dynamics of the network
spread activation from the target unit and the supervisor de-
termines the short-term goal of the robot, as a displacement

3Notice that the nonholonomic constraints of the robot are post-
poned to the motion control level.

Target (Direction, Distance)
Long-Term Goal

Target
Position

Odometry i

Target Position Update

I
Current 3 ? Predicted Position
P

Velocities ! —
T Position
I
I

rediction
Predicted Position

Short-Term Memory

Current |
Sonar Readings;,

i
Translational and |
Rotational

Velocities

or i
Motion Controller
u

Velocities

Figure 5: The complete architecture of the system.

Ar and A¢ with respect to the robot’s current configuration.
Ar and A¢ are passed to the motion controller which deter-
mines the appropriate control input and updates the robot’s
speeds. The whole cycle is repeated continuously until the
target has been reached to a certain distance (currently 1 in).
With the current implementation, the cycle time is approxi-
mately 0.33 sec.

Sonar Short-Term Memory

In order to cope with sonar noise, the system maintains a
short-term memory of sensory information. In that sense,
the most recent sonar returns (within the last 2-3 sec) are
stored and reused in the next few steps before they are dis-
carded. This short-term sensory integration provides a more
accurate ‘idea’ of the robot’s surrounding, without signifi-
cantly reducing the ability to sense changes. Given the cycle
time of our system, the 2-3 sec time window corresponds to
a window of 6-10 sonar scans.

A sonar reading in the memory has been obtained at a
configuration different than the one where it is reused, due
to the robot’s motion. Therefore, appropriate transformation
is necessary. This is achieved by storing the configuration
of the robot (from odometry) at the time each reading was
obtained along with the readings themselves. Given this, all
sensor readings, stored in the cyclical buffer that implements
the memory, can be projected to any arbitrary configuration
(in our case, the predicted configuration), as if they were ob-
tained from there. For such a short time window, odometry
can be safely assumed to be accurate and, thus, the transfor-
mation. Transformed readings that fall out of the map scope
(the robot has moved away), or within the robot’s physi-
cal dimensions (most likely erroneous ones), are discarded.
Note that the system makes no assumptions about the shape
and size of obstacles.

The effect of the short-term memory is demonstrated in

Figure 6: Representation on the polar map.

Figure 6. Assuming that the robot has arrived there from the
top left corner, the instant sonar mapping (memory size=1)
is shown on the left and the sonar mapping with a memory
of size 10 on the right, both on a 100x48 polar map. The
real obstacle positions are shown at the background shaded.
Notice the richer representation in the second case and the
fact that the robot is still aware of obstacles (like the left wall
at the top) which are out of the sonar scope at the current
position or non sensible because of the relative beam angle.

Configuration Prediction

It is an inherent characteristic of computer-based robot con-
trol that sensing and acting takes place at discrete times. De-
pending on the complexity of the software and the efficiency
of the hardware, the time At between consecutive control
steps might be large enough to lead to significant errors es-
pecially for high speed motion. The problem is that action
at the end of the current control step corresponds to the envi-
ronment as it was perceived at the end of the previous step.

The solution we propose is as follows. The system esti-
mates (using its real-time clock) the time At between issu-
ing control commands. Using the kinematic model of the
robot (the unicycle model, in our case), the current veloc-
ities (from internal state), the current configuration (from
odometry) and the time At, the configuration of the robot
by the end of the control cycle (when the control command
is issued) can be predicted. Using this configuration as ref-
erence the system projects all its data into the near future
and the control command is determined with respect to that
situation. Consequently, the resulting control command is
not out of date by the time it is issued.

Given that At may not be constant but variable, an es-
timation is calculated continuously based on averages over
several recent control steps. The advantage of this technique
is that the control algorithm is being adapted continuously
to the speed of the platform it is running on. Nevertheless,
the faster the platform, the better the control.

Motion Control

Motion control is the problem of determining the appropri-
ate control input (translational and rotational velocity in our
case) that will drive the robot to the (sub)goals specified by
the path planner. Our controller that takes into account the
dynamic constraints of the robot is only outlined here.
Given the subgoal (A¢, Ar) at the current step, we want
to derive the control input (u, v) (translational and rotational

[y

Target 3 Target 1

Figure 7: Sample runs of the robot in simulated (left) and
real (right) worlds.

velocities) for that step. The algorithm runs as follows:

1. Determine the current Dynamic Window (DW) [3], i.e.
the subspace of the velocity space directly accessible in
one step, according to the maximum accelerations of the
robot.

2. Apply the objective function on each pair of a discretiza-
tion of DW. For each pair (u, v), the final configuration
of the robot is estimated, firstly by invoking the trajec-
tory equations of the unicycle kinematic model (for time
At, the control step duration), and then by calculating the
minimum braking distance and angle the robot will travel
before it comes to a complete stop (assuming maximum
deceleration). The objective function combines the dis-
tance between the desired configuration vector and the
(estimated) final configuration vector with the weighted
density of obstacles (given by the polar map) along this
trajectory, to derive a measure of appropriateness of the
pair (u, v).

3. Select the pair (u, v) with the minimum value as the next
control input.

In effect, the robot is ‘chasing’ the subgoal returned by the
polar map aiming to stop there. Since the subgoal moves in-
crementally, the resulting motion is smooth and continuous
until the robot reaches the target, where it stops.

Results

Our scheme was tested on a Nomad 200 mobile robot of the
Robotics and Automation Lab at USL. The Nomad has a
ring of 16 sonars and can translate with a maximum speed
of 24 in/sec and rotate with a maximum speed of 45 deg/sec.

Figure 7 (left) shows a sample (simulated) run of the robot
with four target positions. The thickness of the path trace is
equal to the robot’s diameter and the circle at the top right
indicates the sensory/map scope used (100 in). A polar map
of size 100x32 has been used in this and all subsequent runs.

Figure 7 (right) is a real-world run in a typical lab/office
environment (USL Robotics and Automation Laboratory).

“Note that this is necessary due to the nonholonomic con-
straints in order to avoid collisions.

Figure 8: Avoiding a U-shaped obstacle (left) and naviga-
tion in a cluttered environment (right).

The robot started at the bottom and was given a distant target
in the direction specified by the arrow.

Figure 8 (left) displays a typical U-shaped obstacle situa-
tion and the path followed by the robot. The circle indicates
the sensory scope of the robot. Since our system can sup-
port only local navigation, such traps can be avoided only if
the whole situation falls within the sensory range (and thus,
within the polar map) of the robot. In the opposite case
(large rooms, long walls, etc.) the robot will be trapped,
since it is memoryless in the long term.

Figure 8 (right) shows navigation in a cluttered environ-
ment and the corresponding control input for this run. The
dark line indicates the translational speed (0.1 in/sec) and
the light one the rotational speed (0.1 deg/sec). The hori-
zontal axis indicates control steps.

Figure 9 shows a possible extension to global navigation.
A long trip in a simulated office-like environment is com-
pleted by passing (currently manually) only 13 subgoal po-
sitions to the local navigation system. Notice that these po-
sitions are certain landmarks (doors, junctions, etc.). More-
over, if the next subgoal in the sequence is given shortly
before the previous one has been reached, the result will be
a continuous and smooth path.

The system works well enough with moving obstacles as
long as they move with a speed comparable to the robot’s
speed. In particular, the robot had no trouble avoiding walk-
ing people in the lab.

Conclusion and Future Work

We have presented applications of neural maps in mobile
robot navigation. It was suggested that neural maps offer an
intermediate solution between distance transform and har-
monic functions. We also proposed methods for efficient
implementations and demonstrated the validity of the ap-
proach on a Nomad 200 mobile robot.

In the future, we would like to investigate the role of the
weight values in the map for path construction. We believe
that weights can be used to code for other factors, like dif-
ficulty of navigating in different parts of the plane, prefer-
able pathways, asymmetric costs like inclines, etc. Also, for
faster path construction we are interested in heuristics for
updating only an adequate portion of the map. Such ideas
have already appeared [8] in the context of A* search. For

Figure 9: Extension to global navigation.

the polar map, we plan to (re)organize it into a polar and log-
arithmic topology that more closely follows the sonar data
distribution. Finally, we would like to make use of the self-
organization property to make the map self-adaptive to the
robot’s sensory system. The ultimate goal is an integrated
system for full robot navigation based on neural maps.

Acknowledgments

The first author would like to thank the Lilian-Boudouri Founda-
tion in Greece for financial support. Special thanks to Prof. Kimon
P. Valavanis, director of the USL Robotics and Automation Lab,
for use of the facilities.

References

1. Amari, S. 1989. Dynamical Stability of Formation of Cortical
Maps. In Dynamic Interaction Neural Networks: Models and
Data, eds. M. Arbib and S. Amari, Springer-Verlag, pp. 15-34.

2. Connoly, C; Burns, J; and Weiss, R. 1990. Path Planning
with Laplace’s Equation. IEEE International Conference on
Robotics and Automation 1990, pp. 2102-2106.

3. Fox, D.; Burgard, W.; and Thrun, S. 1997. The Dynamic
Window Approach to Collision Avoidance. IEEE Journal of
Robotics and Automation, 4, 1, pp. 23-33.

4. Glasius, R.; Komoda, A.; and Gielen, S. 1995. Neural Network
Dynamics for Path Planning and Obstacle Avoidance. Neural
Networks 8, 1, pp. 125-133.

5. Jarvis, R. 1993. Distance Transform Based Path Planning for
Robot Navigation. In Recent Trends in Mobile Robots, ed. Y.
Zheng, World Scientific Pub, pp. 3-31.

6. Lagoudakis, M. 1998. Mobile Robot Local Navigation with a
Polar Neural Map. M.Sc. thesis, University of Southwestern
Louisiana.

7. Rosenfeld, A., and Pfaltz, J. 1966. Sequential Operations in
Digital Image Processing. Journal of the Association for Com-
puting Machinery, 13, 4, pp. 471-494.

8. Trovato, K. 1996. A* Planning in Discrete Configuration
Spaces of Autonomous Systems. Doctoral Dissertation, Univer-
sity of Amsterdam, Netherlands.

