
Gathering Autonomous Mobile Robots

MARK CIELIEBAK
ETH Zurich, Switzerland

GIUSEPPE PRENCIPE
Università di Pisa, Italy

Abstract

We study the problem of coordinating a set of autonomous mobile robots
that can freely move in a two-dimensional plane; in particular, we want them
to gather at a point not fixed in advance (GATHERING PROBLEM). We in-
troduce a model of weak robots (decentralized, asynchronous, no common
knowledge, no identities, no central coordination, no direct communication,
oblivious) which can observe the set of all points in the plane which are
occupied by other robots. Based on this observation, a robot uses a deter-
ministic algorithm to compute a destination, and moves there. We prove that
these robots are too weak to gather at a point in finite time. Therefore, we
strengthen them with the ability to detect whether more than one robot is
at a point (multiplicity). We analyze the GATHERING PROBLEM for these
stronger robots. We show that the problem is still unsolvable if there are only
two robots in the system. For 3 and 4 robots, we give algorithms that solve
the GATHERING PROBLEM. For more than 4 robots, we present an algorithm
that gathers the robots in finite time if they are not in a specific symmetric
configuration at the beginning (biangular configuration). We show how to
solve such initial configurations separately. However, the general solution of
the GATHERING PROBLEM remains an open problem.

Keywords

Autonomous Mobile Robots, Gathering, Distributed Coordination.

1 Introduction

Consider a distributed system whose entities are autonomous mobile robots mod-
eled as devices with computational capabilities that are able to freely move in a
two-dimensional plane. We study the problem of coordinating these robots. The
coordination mechanism is totally decentralized, i.e., the robots are completely
autonomous and no central control is used. The objective is to gather all robots at
one point. This point is not fixed in advance.



2 Proceedings in Informatics

The GATHERING PROBLEM is one of the basic interaction primitives studied
in a system populated by a set of autonomous mobile robots [7]. The problem
of coordinating a collection of autonomous mobile robots has been studied in
robotics and in artificial intelligence [2, 6, 7]. Mostly, the problem is approached
from an experimental point of view: algorithms are designed using mainly heuris-
tics, and then tested either by means of computer simulations or with real robots.
Neither proofs of correctness of the algorithms, nor any analysis of the relation-
ship between the problem to be solved, the capabilities of the robots employed,
and the robots’ knowledge of the environment are given. Recently, concerns on
computability and complexity of the coordination problem have motivated algo-
rithmic investigations, and the problem has also been approached from a compu-
tational point of view [1, 4, 5, 8, 9, 10]. In [1] and [10], any action of the robots,
including moving, is instantaneous, while in [4, 5, 8, 9], as well as in this paper,
there is no such assumption.

We consider a very weak model of robots: The robots are anonymous, have
no common knowledge, no central coordination, and no means of direct com-
munication. Initially, they are in a waiting state. They wake up asynchronously,
observe the other robots’ positions, compute a point in the plane, move towards
this points (but may not reach it1) and become waiting again. Each step takes an
unpredictable amount of time. The model is described in detail in the next section.

We can show that these robots cannot gather if they have no additional abili-
ties. One such ability is to detect multiplicities, i.e., to be able to detect whether
there is more than one robot at the same point. This ability is used as follows: first
let at least two robots meet at a point, so that there is a point in the plane with
multiplicity greater than one; then, all the remaining robots move to this point
(thereby, they avoid to generate another point with multiplicity greater than one).

For less than five robots, there exist simple algorithms to gather the robots at
a point. The problem becomes challenging for n

�
5 robots: How can we gather

a large set of robots? An easy solution would be to gather the robots at the Weber
point (WP): the unique point in the plane that minimizes the sum of the distances
between itself and all the points in a given set of points [11]. An interesting prop-
erty of the Weber point is that it does not change when moving any point towards
it. Hence, the robots can simply gather in WP. Unfortunately, the Weber point
is not computable [3]. Therefore, we need a different strategy. Assume that the
initial configuration of the robots is a regular n-gon. This is a totally symmetric
configuration, and either all or no robots can be selected to move. In this case, the
center of the n-gon can be used as a gathering point. Even in the more general
case of biangular configurations with center c (i.e., there exist two angles α and
β such that all angles between two adjacent robots w.r.t. c are either α or β, and
they alternate, see Figure 2.a), the robots can meet in c. On the other hand, we can

1That is, a robot can stop before reaching its destination point, e.g. because of limits to the robot’s
motion energy.



Cieliebak and Prencipe: Gathering Autonomous Mobile Robots 3

design an (already rather sophisticated) algorithm for the GATHERING PROBLEM

(see Section 4), if the initial configuration is not biangular. The remaining chal-
lenge is to combine these two cases, i.e., to design an algorithm which solves
the GATHERING PROBLEM for any initial configuration. This seems to be a hard
problem, and we conjecture that it is unsolvable. For the case n

�
5, in this paper

we focus on describing an algorithm that gather the robots when they are not in a
biangular configuration at the beginning.

The rest of the paper is organized as follows. In the following two sections,
we define the model of robots we are using, the problems to solve, and some
notations. In Section 3, we provide solutions for the GATHERING PROBLEM for
n � 2 � 3 � 4. In Section 4, we present a solution for the GATHERING PROBLEM

for arbitrary n, when the robots are not in a biangular configuration at the begin-
ning. Conclusions are drawn in Section 5. Proofs are mostly omitted due to space
limitations, and can be found in [9].

2 Model and Definitions

2.1 Autonomous Mobile Robots

Each robot is viewed as a point, and it is equipped with sensors that let it observe
the set of all points in the plane which are occupied by at least one other robot,
and form its local view of the world. Note that a robot only knows whether there
are other robots at a specific point, but it has no knowledge about their number.
The local view of each robot includes a unit of length, an origin (which we will
assume w.l.o.g. to be the position of the robot in its current observation), and
a coordinate system (e.g. Cartesian). We do not assume any kind of agreement
among the robots on the unit of length, the origin, or the local coordinate systems.

A robot is initially in a waiting state (Wait). Asynchronously and indepen-
dently from the other robots, it observes the environment (Look) by activating its
sensors. The sensors return a snapshot of the world, i.e. the set of all points which
are occupied by at least one other robot, with respect to the local coordinate sys-
tem. The robot then calculates its destination point (Compute) according to its
deterministic algorithm, based only on its local view of the world. Each robot
executes the same deterministic algorithm. It then moves towards the destination
point (Move); if the destination point is the current location, the robot stays still.
After an unpredictable time (during or after the move), the robot returns to the
waiting state. Therefore, it may or may not reach its destination point during the
move. The sequence Wait - Look - Compute - Move forms a cycle of a robot.

The robots are fully asynchronous, that is the amount of time spent in each
phase of a cycle is finite but otherwise unpredictable. In particular, the robots
do not have a common notion of time. As a result, robots can be seen by the
other robots while moving, and thus computations can be made based on obso-



4 Proceedings in Informatics

b

a

V � O
�
a � V � b �

� O
�
a � V � b �

V

b

a

c

a

b
c

a

b
V

bα
a

b. c. e.a. d.

Figure 1: (a) Convex angle ��� a � V � b � . (b), (c) Angles � O � a � V � b � with clockwise
and counterclockwise orientation, respectively. (d) Arc (thick line) and sector
(grey part) defined by ��� a � c � b � . (e) Grey area represents segm ����� a � c � b �	� .

lete observations. The robots are oblivious, meaning that they do not remember
any previous observations nor computations performed in any previous step. The
robots are anonymous, meaning that they are a priori indistinguishable by their
appearance, and they do not have any kind of identifiers that can be used during
the computation. The robots have no means of direct communication: any com-
munication occurs in a totally implicit manner, by observing the other robots’
positions.

There are two limiting assumptions concerning infinity: (A1) The amount of
time required by a robot to complete a cycle is not infinite, nor infinitesimally
small. (A2) The distance traveled by a robot in a cycle is not infinite, nor in-
finitesimally small (unless it brings the robot to the destination point). As no other
assumptions on space exists, the distance traveled by a robot in a cycle is unpre-
dictable.

2.2 The Gathering Problem

The GATHERING PROBLEM is defined as follows.

Given n robots r1 ��
	
�
 � rn, arbitrarily placed in the plane, with no two
robots in the same position, make them gather at one point in a finite
number of cycles.

A relaxed variant of this problem would be to make the robots only move
“very close” to each other. This variant is rather easy to solve: each robot com-
putes the center of gravity2 of all robots, and moves towards it. However, in the
GATHERING PROBLEM, we want the robots to meet exactly at one point.

Theorem 1 There exists no deterministic oblivious algorithm that solves the
GATHERING PROBLEM in a finite number of cycles for a set of n

�
2 robots

with no additional abilities.
2For n points x1 ������ xn in the plane, the center of gravity is c : � 1

n ∑n
i � 1 xi.



Cieliebak and Prencipe: Gathering Autonomous Mobile Robots 5

α

αβ

α

β

β

β
α

45 �

a. b.

Figure 2: (a) Biangular and (b) equiangular configuration of 8 points.

Proof. (sketch) Gathering two robots with no additional abilities is impossible
(see [10]). Assume there are n

� 2 robots. If they meet at a point, then at some
time - immediately before they meet - they may occupy exactly two different
positions, say x and y (this can be achieved using an adversary which makes them
become waiting at the right moments). If the robots have no additional abilities,
this looks exactly the same as if there are only two robots in the plane, in positions
x and y. Hence, they cannot gather. For a detailed proof, see [9]. �

Because of Theorem 1, we strengthen our robots by multiplicity detection:
the robots can distinguish whether there is zero, one, or more than one robot at a
specific point in the plane. If the multiplicity at a point p is greater than one, we
say that there is strict multiplicity at p.

We will heavily exploit the multiplicity detection in our algorithms by always
gathering the robots at the only position where strict multiplicity occurs.

2.3 Notation

In the rest of the paper, the following notation will be used (refer to Figure 1).
Given two distinct points a and b in the plane, � a � b � denotes the half-line which
starts in a and passes through b, and � a � b � denotes the line segment between a and
b. We denote by dist � a � b � the Euclidean distance between the two points. Given
two half-lines �V � a � and �V � b � , we denote by ��� a � V � b � the convex angle (i.e., the
angle which is at most 180 � ) centered in V and with sides �V � a � and �V � b � . Given
an orientation O (clockwise or counterclockwise), we denote by � O � a � V � b � the
oriented angle centered in V , i.e., the angle from �V � a � to �V � b � according to the
orientation O.

Given a circle C , the intersection between the circumference of C and an
angle α at the center of C is denoted by arc � α � ; the intersection between α and C
is denoted by sector � α � ; and the area of the circle delimited by � a � b � and arc � α �
is denoted by segm � α � , with a and b being the endpoints of arc � α � .

Given points a, b and c, the triangle with these three points as vertices is
denoted by � � a � b � c � . We use p ��� � a � b � c � to indicate that p is inside the triangle
or on its border.

We say that n distinct points in the plane are in biangular configuration (refer



6 Proceedings in Informatics

a. b. c.

cer1

r2 x

60 �

y

120 �

120 �
yxr3

60 �
120 �

120 �

120 �

Figure 3: (a) Center of equiangularity of r1, r2 and r3. (b)–(c) The two 120 � -circles
defined by x and y.

to Figure 2.a) if there exists a point c (the center), an ordering of the points, and
two angles α and β such that each two adjacent points form an angle α or β w.r.t.
c, and the angles alternate. If the points are in biangular position, then the center
c is unique, can be computed in finite time, and is invariant under movement in
its direction; that is, it does not change if any of the points moves towards c. If
α � β, we say that the points are in equiangular configuration (see Figure 2.b).

3 Solving the Gathering Problem for n
�

4

In the following, we will provide solutions for the GATHERING PROBLEM sep-
arately for n � 2 � 3 and 4 robots. The general idea of the algorithms is to let the
robots reach a configuration where there is exactly one point q in the plane with
strict multiplicity (recall that there is no strict multiplicity in the initial configura-
tion, and that the robots can detect multiplicities). When such a configuration is
reached, all the robots move towards q avoiding collisions (i.e., q remains the only
point with strict multiplicity). This is accomplished by the routine move to(q)
that moves robot r towards q in the plane as follows: if r is already on q, it does
not move at all; we use do nothing() to indicate that a robot does not move.
If no robot is on the segment � r� q � , then r moves towards q. Otherwise, let r � be
the robot on � r� q � closest to r; then r is moved to a point at distance at most d

� 0
from r � . In this way, collisions are avoided.

3.1 Two Robots

Suzuki et al. proved in [10] that the GATHERING PROBLEM is unsolvable for two
robots if the robots have no additional abilities. On the other hand, if the robots
can detect that they “run into each other”, i.e. they stop immediately when they
move on the same line in opposite directions and they meet, then the problem
can be solved easily: each one of the two robots simply starts moving towards the
other robot. Note that this ability differs from multiplicity detection, since here
we assume that they recognize the fact that they “run into each other” while they
move, and that they stop immediately, whereas multiplicity detection is only used



Cieliebak and Prencipe: Gathering Autonomous Mobile Robots 7

p1

Cp1 p3

p3

p2

ce

Cp2 p3

Cp1 p2

Figure 4: Center of equiangularity ce lies on the intersection of the three 120 � -
circles Cp1 p2 , Cp2 p3 and Cp1 p3 .

during the computation step.

Result 1 The GATHERING PROBLEM is unsolvable for two robots without addi-
tional abilities. If the robots can detect when they “run into each other”, there
exists an algorithm which solves the GATHERING PROBLEM.

3.2 Three Robots

In order to solve the GATHERING PROBLEM for n � 3 robots, we first present
some geometric basics, which we will use in the algorithm (Algorithm 1). Given
three distinct points p1 � p2 and p3, we say that a point ce is the center of equian-
gularity of p1 � p2 and p3, if ��� p1 � ce � p2 � � � � p1 � ce � p3 � � � � p2 � ce � p3 � � 120 �
(see Figure 3.a). If the center of equiangularity exists, then it is unique. If ce is the
center of equiangularity of p1 � p2 and p3, then ce is the center of equiangularity
of p �1 � p �2 and p �3 for all p �i � � pi � ce � � 1 � i � 3. Thus, moving the points towards ce

does not change the center of equiangularity.
Given two distinct points x and y, we say that circle Cxy with center c is a 120 � -

circle if ��� x � p � y � � 120 � for all p � arc � ��� x � c � y �	� . There exist two 120 � -circles
for x and y, depending on the orientation (refer to Figure 3.b–c).

If the center of equiangularity of p1 � p2 and p3 exists, then it lies on the inter-
section of three 120 � -circles Cp1 p2 , Cp2 p3 and Cp1 p3 (refer to Figure 4).

Lemma 1 Consider three distinct points p1 � p2 and p3 such that � � p1 � p2 � p3 �
does not contain an angle greater than or equal to 120 � . Then the center of
equiangularity of p1 � p2 and p3 exists and can be computed in finite time.

Given three robots r1 � r2 � r3, we distinguish three main cases to solve the



8 Proceedings in Informatics

GATHERING PROBLEM (refer to Figure 5.a–c): If the robots are on a line, we
move the two outer robots towards the median robot. If the triangle � � r1 � r2 � r3 �
contains an angle of at least 120 � in vertex ri, then we move the other two robots
towards ri. Otherwise, the triangle � � r1 � r2 � r3 � contains no angle greater than or
equal to 120 � . In this case, we move all robots towards ce, with ce the center of
equiangularity of r1 � r2 and r3. This is shown in Algorithm 1.

For the correctness of Algorithm 1, observe that the configuration of the first
two cases (robots on a line, and triangle with an angle of at least 120 � ) remains
invariant until at least one robot reaches its destination (the median robot in the
case of Line 3, and ri in the case of Line 6). Then there is a unique point with
strict multiplicity, and all robots gather at this point. In the third case, the center
of equiangularity does not change until one or more robots reach ce. If more than
one robot reach ce at the same time, then we have a point with strict multiplicity.
If only one robot reaches ce, then we are in the second case (angle greater than
or equal to 120 � ), with ri being the robot in ce. Thus, the other two robots will
continue moving towards ce.

Algorithm 1 Gathering for n � 3
If There Is One Point q With Multiplicity � 1 Then move to(q).
If All 3 Robots Are On A Line Then

r : � The Median Robot On The Line;
move to(r).

5: If � i ��� 1 � 2 � 3 ��� ��� x � ri � y � �
120 � , With x � y �� ri The Other Two Robots Then

move to(ri).
ce : � Center Of Equiangularity Of r1 � r2 � r3;
move to(ce).

Result 2 Three robots that can detect multiplicity can always gather at a point in
a finite number of cycles.

3.3 Four Robots

Given four robots r1 �	
�
	
 � r4 in the plane, the only possible configurations are de-
picted in Figure 5.d–g. Algorithm 2 shows how to take distinct actions according
to these initial configuration of the robots, similarly to the case of three robots.
Observe that in the last case, if one robot reaches point q (computed in Line 14),
we end up in the configuration depicted in Figure 5.e, and q is the position of the
median robot.

Result 3 Four robots that can detect multiplicity can always gather at a point in
a finite number of cycles.



Cieliebak and Prencipe: Gathering Autonomous Mobile Robots 9

r

r �r r
r r2

r1

q
r3

r4

b. c.

g.f.e.d.

a.

r3cer1

r2
r2

r3
r1

�
120 �

Figure 5: (a)–(c) Configurations of 3 points: (a) all on a line; (b) one angle in
� � r1 � r2 � r3 � greater than or equal to 120 � ; (c) center of equiangularity ce inside
� � r1 � r2 � r3 � . (d)–(g) Configurations of 4 points: (d) all on a line; (e) three points
on a line; (f) one point inside the convex hull; (g) all on the convex hull.

4 The Gathering Problem for n � 5

Solving the GATHERING PROBLEM for more than four robots seems to be a hard
problem: Assume that the initial configuration of n robots is a regular n-gon. In
this case, the configuration is totally symmetric, and no subset of the robots can
be deterministically elected to move. Thus, all robots will be allowed to move. An
n-gon is a special case of a biangular configuration with equal angles α � β and
equal distances from the center of biangularity c. Since the center c of biangularity
is invariant under movement towards c, moving all robots towards c solves the
GATHERING PROBLEM if the initial configuration is biangular (and if it is an n-
gon). Hence, we have a strategy that solves the problem if the initial configuration
is biangular.

In the following, we focus on presenting an algorithm (Algorithm 3) which
solves the GATHERING PROBLEM for more than four robots if the initial config-
uration is not biangular. The sections concludes with a discussion why Algorithm
3 in combination with the strategy given above does not solve the entire GATH-
ERING PROBLEM for n

�
5.

4.1 Definitions

Smallest Enclosing Circle. Given n distinct points in the plane, we will de-
note by SEC the smallest enclosing circle of the points. This circle passes ei-
ther through two of the points that are on the same diameter (opposite points),
or through at least three of the points. The smallest enclosing circle of a set of n



10 Proceedings in Informatics

Algorithm 2 Gathering for n � 4
If There Is One Point q With Multiplicity � 1 Then move to(q).
If All 4 Robots Are On A Line Then

r� r � : � The Two Median Robots On The Line;
c : � Center Of The Two Outer Robots On The Line;

5: If I Am r or r � Then move to(c) Else do nothing().
If Three Robots Are On A Line Then

r : � The Median Robot On The Line;
move to(r).

CH : � Convex Hull Of � r1 � r2 � r3 � r4 � ;
10: If One Robot Is Strictly Inside CH Then

r : � Robot Inside CH;
move to(r).

If No Robot Is Strictly Inside CH Then
q : � Intersection Point Of The Two Diagonals Of CH;

15: move to(q).

points is unique and can be computed in O � n logn � time ([12]).

Lemma 2 Let SEC be the smallest circle enclosing n distinct points in the plane,
and let c be its center. Let l1 ��
	
	
 � lk be the points on the circumference of SEC
(w.l.o.g they are in clockwise order). If k

�
4, then there exists a point li, 1 � i � k,

such that ��� li � 1 � c � li �
1 � � 180 � (all operations are modulo k), and SEC does not

change by eliminating li from the set of points.

String of Angles. Given n distinct points p1 �	
	
�
 � pn in the plane, let SEC be the
smallest enclosing circle of the points, and c be its center. For an arbitrary point
pk, 1 � k � n, and an orientation O (clockwise or counterclockwise), we define
the string of angles SA � pk � O � by the following algorithm (refer to Figure 6 for a
pictorial representation of the definitions related to SA):

Compute SA(pk � O)
p : � pk � i : � 1;
While i �� n � 1 Do

p � : � Succ(p � O);
SA � i � : � � O � p � c � p � � ;
p : � p � ; i : � i � 1;

End While

The successor of p, computed by Succ(p � O), is (refer to Figure 7)

- either the point pi �� p on � c � p � such that dist � c � pi � is minimal among all
points p j �� p on � c � p � with dist � c � p j � � dist � c � p � ), if such a point exists;
or



Cieliebak and Prencipe: Gathering Autonomous Mobile Robots 11

l7

l8

l1

l3

revSA � 6 �

l4
l5

l6
r4

SA � 7 �

r7

SA � 6 �
r6

SA � 5 �
r5

α
β

γ
r8

α

γ

α SA � 3 �

r3

β

SA � 2 �
r1

SA � 1 �SA � 8 � r2

α

l2
revSA � 8 �

revSA � 2 �

revSA � 3 �

revSA � 5 �revSA � 4 �

revSA � 7 �

revSA � 1 �

SA � 4 �

Figure 6: Example of the string of angles computed by Compute SA(r1 � O),
with a clockwise orientation of SEC. With α � 25 � � β � 60 � , and γ � 70 � , we have
SA � r1 � O � ��� α � β � γ � α � α � β � γ � α �

��� 25 � � 60 � � 70 � � 25 � � 25 � � 60 � � 70 � � 25 � � ;
LexMinString ��� α � α � β � γ � α � α � β � γ � ; StartSet � � 4 � 8 � , and revStartSet � /0.

- the point pi �� p such that, according to orientation O, there is no other point
inside sector ��� O � p � c � pi ��� , and there is no other point on the line segment
� c � pi � .

Instead of SA � pk � O � , we write SA � pk � if we do not refer to a specific orienta-
tion, and SA if we do not consider specific pk and O. Given pk and O, procedure
Succ() defines a unique successor, and thus a unique string of angles. Given two
starting points pk and pi, then SA � pk � O � is a cyclic shift of SA � pi � O � . We asso-
ciate the i-th angle in SA � pk � O � with its defining point, i.e., if SA � i � � � O � p � c � p � � ,
then we say that SA � i � is associated with p. We say that SA is general if it does
not contain any zeros; otherwise, at least two points are on a line starting in c, and
we call the string of angles degenerated.

We define the reverse string of angles revSA in an analogous way, i.e., as the
string of angles according to the opposite orientation of SA. Let LexMinString be
the lexicographically minimal string among all strings of angles (in both orienta-
tions), i.e., LexMinString : � min � � SA � pi � � 1 � i � n ��� � revSA � pi � � 1 � i � n � � .
Let StartSet be the set of all indices where LexMinString starts, i.e., StartSet : �

� i � 1 � i � n � SA � pi � � LexMinString � , and let revStartSet be the set of all indices
where LexMinString starts with the opposite orientation.

4.2 Algorithm Sketch

In Algorithm 3, we sketch an algorithm that solves the GATHERING PROBLEM for
n

�
5 robots if the initial configuration is not biangular. The complete algorithm

as well as the proof of correctness can be found in [9]. The algorithm guarantees



12 Proceedings in Informatics

7
1

2

4

3

5

6
p

c

Figure 7: Routine Succ(p � O) in Compute SA(). The circle is oriented
clockwise. The points are numbered according to routine Succ(); that is
Succ(p � O)=2, Succ(2 � O)=3, and so on.

that the smallest enclosing circle SEC does not change as long as there is no
strict multiplicity. Moreover, SA remains invariant unless a strict multiplicity is
achieved, or a single robot reaches c, or SA becomes degenerated. Since the initial
configuration is not biangular (and thus not totally symmetric), a strict subset of
the robots can be elected which is allowed to move. During the movement, the
occurrence of any totally symmetric configuration is avoided. The three cases in
Lines 17–19 are sketched in the following.

Case OneStartingIndex (Line 17 of Algor. 3). If � StartSet � revStartSet � � 1,
then there exists exactly one starting index j and orientation O for LexMinString.
If some robots are inside SEC, we move them towards c. If all robots are on the
circumference of SEC, we use j and O to elect a unique robot r which moves
towards c without changing SEC (r is chosen according to Lemma 2).

Case TwoStartingIndices (Line 18 of Algor. 3). If � StartSet � revStartSet � � 2,
then there exists for each orientation exactly one robot r (resp. rrev) such that
LexMinString starts in the associated index of SA (resp. revSA). We elect two
neighbors x and y of r and rrev in a unique way, such that SEC does not change
when x, y, or both of them move towards c (refer to Figure 8). If no robot or no
other robot except x and y is inside SEC, we move x and y “carefully” towards c,
which means that none of the two is allowed to enter c unless the other robot is
already inside SEC. Otherwise, there is at least one other robot inside SEC, and
we simply move all robots which are inside SEC towards c.

Case ManyStartingIndices (Line 19 of Algor. 3). If � StartSet � revStartSet � �
2, then SA (and revSA as well) is periodic, i.e., there exist l

�
2 indices i1 �	
�
	
 � il

such that SA � pi j � � SA � pik � for all 1 � j � k � l. The string of angles can be par-
titioned into l equal blocks. Roughly speaking, we elect one or two robots per
block which move towards c. We have to ensure that SEC remains invariant, even



Cieliebak and Prencipe: Gathering Autonomous Mobile Robots 13

Algorithm 3 Gathering for n
�

5 (initial configuration not biangular)
If There Is One Point q With Multiplicity � 1 Then move to(q).
SEC : � Smallest Enclosing Circle Of All Robots;
c : � Center Of SEC;
If One Robot r Is At Point c Then

5: If No Other Robot Is Inside SEC Then
q : � Position Of An Arbitrary Robot On SEC;
If I Am r Then move to(q) Else do nothing().

Else % Some Other Robot Is Inside SEC Besides r %
Moving : � � Robots Inside SEC � ;

10: If I Am In Moving Then move to(c) Else do nothing().
Else % No Robot Is At c %

r : � An Arbitrary Robot;
O : � An Arbitrary Orientation on SEC;
SA : � String Of Angles w.r.t. r And O;

15: If SA Is General Then
StartSet � revStartSet : � Indices Where Lex. Minimal String Starts;
If � StartSet � revStartSet � � 1 Then Case OneStartingIndex.
If � StartSet � revStartSet � � 2 Then Case TwoStartingIndices.
If � StartSet � revStartSet � � 2 Then Case ManyStartingIndices.

20: Else %SA Is Degenerated%
If Only One Robot r Is Inside SEC Then

r � : � Next Robot On Same Radius � c � r � ;
If I Am r Then move to(r � ) Else do nothing().

Else % More Than One Robot Are Inside SEC %
25: If I Am Inside SEC Then move to(c).

Else do nothing().

if all these robots move together. It can be proven that such an election always
exists if the configuration is not biangular. If only elected robots are inside SEC,
we move all elected robots towards c. Again, the movement is done “carefully”,
i.e., no robot is allowed to reach c unless all other elected robots are already inside
SEC. If there are other robots inside SEC, then we simply move all robots inside
SEC towards c.

Result 4 Five or more robots that can detect multiplicity and that are not in a
biangular configuration at the beginning can always gather at a point in a finite
number of cycles.

Algorithm 3 solves the GATHERING PROBLEM for more than four robots if
the initial configuration is not biangular. For initial biangular configurations, we
can gather the robots at the center of biangularity (as pointed out at the beginning
of this section). Hence, we have two algorithms which together cover all possible



14 Proceedings in Informatics

b.a. c.

r
α

rrev

r α rrev

r rrev

α

Figure 8: Algorithm 3, Case � StartSet � revStartSet � � 2. The grey dots represent
the robots adjacent to r and rrev that are allowed to move.

initial configurations. However, these two algorithms cannot be simply combined
to solve the entire GATHERING PROBLEM: let the robots’ initial configuration be
non–biangular. Hence, they start executing Algorithm 3. During the run of the
algorithm, it may happen that the robots form a biangular configuration. Since the
robots act completely asynchronously, some of them may observe this biangular
configuration, while others do not. Thus, some of the robots move to the center
c of biangularity, while others still perform Algorithm 3. Hence, the gathering
could never happen.

5 Conclusions

We presented a deterministic and oblivious algorithm for the GATHERING PROB-
LEM for n

�
5 robots that works if the robots can detect multiplicities, and if

the initial configuration is not biangular. Instead of multiplicity detection, other
additional abilities may be considered in future work. For instance, it would be
interesting to explore the relationship between memory and solvability of the as-
signed tasks, or to study the presence of some kind of communication among the
robots.

We strongly believe that the restriction of the algorithm to non–biangular ini-
tial configurations can be relaxed by excluding totally symmetric initial configu-
rations (all robots on a circle and in biangular position). Moreover, the algorithm
might be modified such that, starting from a non–biangular configuration, the
robots never form a biangular configuration during the run of the algorithm. How-
ever, the remaining challenge is to design an algorithm which solves the GATH-
ERING PROBLEM with n

�
5 robots for any initial configuration. This seems to be

a hard problem, since starting from a totally symmetric configuration, all robots
will be allowed to move, and an algorithm can hardly control which configura-
tions occur during their movement. Therefore, we conjecture that the GATHER-
ING PROBLEM is unsolvable in general.



Cieliebak and Prencipe: Gathering Autonomous Mobile Robots 15

Acknowledgements

We would like to thank Stephan Eidenbenz, Paola Flocchini, Vincenzo Gervasi,
Zsuzsanna Lipták, Nicola Santoro, Konrad Schlude, and Peter Widmayer for the
helpful discussions and comments.

References

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. A Distributed Memoryless
Point Convergence Algorithm for Mobile Robots with Limited Visibility.
IEEE Transaction on Robotics and Automation, 15(5):818–828, 1999.

[2] T. Balch and R. C. Arkin. Behavior-based Formation Control for Multi-robot
Teams. IEEE Transaction on Robotics and Automation, 14(6), December
1998.

[3] E. J. Cockayne and Z. A. Melzak. Euclidean Constructibility in Graph-
minimization Problems. Mathematical Magazine, 42:206–208, 1969.

[4] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Hard Tasks for
Weak Robots: The Role of Common Knowledge in Pattern Formation by
Autonomous Mobile Robots. In ISAAC ’99, volume LNCS 1741, pages 93–
102, 1999.

[5] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of Au-
tonomous Mobile Robots With Limited Visibility. In STACS 2001, volume
LNCS 2010, pages 247–258, 2001.

[6] D. Jung, G. Cheng, and A. Zelinsky. Experiments in Realising Cooperation
between Autonomous Mobile Robots. In ISER, 1997.

[7] M. J. Matarić. Designing Emergent Behaviors: From Local Interactions
to Collective Intelligence. In From Animals to Animats 2: Int. Conf. on
Simulation of Adaptive Behavior, pages 423–441. The MIT Press, 1993.

[8] G. Prencipe. CORDA: Distributed Coordination of a Set of Autonomous
Mobile Robots. In ERSADS 2001, pages 185–190, 2001.

[9] G. Prencipe. Distributed Coordination of a Set of Au-
tonomous Mobile Robots. PhD thesis, Università di Pisa, 2002.
http://sbrinz.di.unipi.it/˜peppe/tesi.ps.

[10] I. Suzuki and M. Yamashita. Distributed Anonymous Mobile Robots: For-
mation of Geometric Patterns. Siam Journal of Computing, 28(4):1347–
1363, 1999.



16 Proceedings in Informatics

[11] E. Weiszfeld. Sur le Point Pour Lequel la Somme Des Distances de n Points
Donnés Est Minimum. Tohoku Mathematical, 43:355–386, 1936.

[12] E. Welzl. Smallest Enclosing Disks (Balls and Ellipsoids). Lecture Notes in
Computer Science, 555:359–370, 1991.

Mark Cieliebak is a Ph.D. student at the Computer Science Department of ETH Zurich.
E-mail: cielieba@inf.ethz.ch

Giuseppe Prencipe is a research fellow at the Computer Science Department of the Uni-
versity of Pisa. E-mail: prencipe@di.unipi.it


