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Abstract

In this paper we consider the problem of exploring an un-
known environment by a team of robots. As in single-robot
exploration the goal is to minimize the overall exploration
time. The key problem to be solved therefore is to choose
appropriate target points for the individual robots so that
they simultaneously explore different regions of their envi-
ronment. We present a probabilistic approach for the coor-
dination of multiple robots which, in contrast to previous
approaches, simultaneously takes into account the costs of
reaching a target point and the utility of target points. The
utility of target points is given by the size of the unexplored
area that a robot can cover with its sensors upon reaching
a target position. Whenever a target point is assigned to
a specific robot, the utility of the unexplored area visible
from this target position is reduced for the other robots.
This way, a team of multiple robots assigns different target
points to the individual robots. The technique has been im-
plemented and tested extensively in real-world experiments
and simulation runs. The results given in this paper demon-
strate that our coordination technique significantly reduces
the exploration time compared to previous approaches.

1 Introduction

The problem of exploring an environment belongs to the
fundamental problems in mobile robotics. In order to con-
struct a model of their environment mobile robots need the
ability to efficiently explore it. The key question during
exploration is where to move the robot in order to min-
imize the time needed to completely explore an environ-
ment. This problem unfortunately is already NP-hard for
known, graph-like environments. In this case it directly
corresponds to the problem of finding the shortest round-
trip through all nodes of the graph, which is the well-known
traveling salesman problem.

The use of multiple robots is often suggested to have sev-
eral advantages over single robot systems [4, 5]. First, co-
operating robots have the potential to accomplish a single
task faster than a single robot. For example, [8] built a
system of collaborative robots that jointly schedule a meet-
ing which outperformed several single robot systems de-
signed to accomplish the same task. Furthermore, multi-
ple robots can localize themselves more efficiently if they

exchange information about their position whenever they
sense each other [6]. Finally, using several cheap robots
introduces redundancy and therefore can be expected to be
more fault-tolerant than having only one powerful and ex-
pensive robot.

In this paper we consider the problem of collaborative ex-
ploration of an unknown environment by multiple robots.
The problem to be solved when using multi-robot systems
is to coordinate the actions of the robots. Without any coor-
dination, all robots might follow the same exploration path
so that the whole group of robots requires the same amount
of time as a single robot would need. Therefore, the key
problem in multi-robot exploration is to choose different
actions for the individual robots so that they simultaneously
explore different areas of their environment.

In this paper we present a technique for coordinating a
group of robots while they are exploring their environment.
This approach uses a map which is built based on the data
sensed by the individual robots. Instead of just guiding all
robots to the target points which have the minimum travel
cost, as previous approaches do, our approach additionally
considers the utility of unexplored positions. This utility is
reduced as soon as one robot chooses a target position in
the visibility range. By trading off the utility and costs of
unexplored positions our approach achieves the coordina-
tion in an elegant way.

Whereas the exploration problem has been studied in de-
tail for single robots [1, 7, 11, 12, 17], there are only a
few approaches for multi-robot systems. Concerning the
collaborative exploration by multiple robots, Rekleitis et
al. [14, 15] focus on the problem of reducing the odom-
etry error during exploration. They separate the environ-
ment into stripes that are explored successively by the robot
team. Whenever one robot moves, the other robots are kept
stationary and observe the moving robot, a strategy sim-
ilar to [10]. Whereas this approach can significantly re-
duce the odometry error during the exploration process, it
is not designed to distribute the robots over the environ-
ment. Rather, the robots are forced to stay close to each
other in order to remain in the visibility range. Thus, us-
ing these strategies for multi-robot exploration one cannot
expect that the exploration time is significantly reduced.

More sophisticated techniques for multi-robot exploration
have been presented in [16, 19]. In both approaches the
robots share a common map which is built during the explo-



Figure 1: Integration of two individual maps into a global map

ration. Singh and Fujimura [16] present a decentralized on-
line approach for heterogenous robots. Whenever a robot
discovers an opening to an unexplored area which it can-
not reach because of its size, the robot selects another robot
which has to carry out this exploration task. The candidate
robot is chosen by trading off the number of areas to be ex-
plored, the size of the robot and the straight-line distance
between the robot and the target region. In the approach of
Yamauchi [19] the robots move to the closest frontier which
is the closest unknown area around the robot according to
the current map. However, there is no coordination com-
ponent which chooses different frontiers for the individual
robots. Our approach, in contrast, is especially designed to
coordinate the robots so that they do not choose the same
frontier. It furthermore computes the distance based on the
current map which is much more accurate than the straight-
line distance. As a result, our approach needs significantly
less time to accomplish the task.

2 Exploration of Unknown Environ-
ments

The goal of an exploration process is to cover the whole
environment in a minimum amount of time. Therefore, it
is essential that the robots keep track of which areas of the
environment have already been explored. Furthermore, the
robots have to construct a global map in order to plan their
paths and to coordinate their actions. As in [19], our ap-
proach uses occupancy grid maps [13, 18] to represent the
environment. We also keep track of the already explored
area in order to identify possible target locations. Since
we do not have any prior knowledge about the structure of
the environment, we estimate the area which is expected to
be covered by the robot’s sensors when it reaches its target
point. Based on this information we choose different target
positions for the remaining robots. The only assumption we
make is that the robots know their relative positions during
the exploration process.

2.1 Integrating Occupancy Grid Maps

The idea of occupancy grid maps is to use a grid of
equally spaced cells and to store in each cell the proba-
bility
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that this cell is occupied by an obstacle.

Due to this probabilistic nature, occupancy grid maps built

by different robots can easily be integrated if their relative
positions are known. Suppose there are � robots which
all have an individual map ��� . Furthermore, let
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 � 

denote the probability that the location ��������� in the global
coordinate frame is occupied in the map of robot � . Then
we integrate the maps of the different robots according to
the following formula [3, 13, 18]:�������	� ��
 � 
�� ��� �"! ��
 �#%$ ���&�"!'�(
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As an example consider the maps depicted in Figure 1.
Here the two local maps shown on the left are integrated
into one global map shown on the right side of the figure.

2.2 Target Point Selection

The key question during the exploration of unknown envi-
ronments is to guide the robots to target points so that the
overall time needed to explore the complete environment
is minimized. Our approach uses the concept of frontier
cells [19]. A frontier cell is a known, i.e. already explored
cell which is an immediate neighbor of an unknown, i.e. un-
explored cell.

Our technique constructs a map of the environment and
iteratively chooses target points for the individual robots
based on the trade-off between the costs of reaching the
target point and its utility. Since the environment is not
known, it estimates the expected area which will be ex-
plored when a robot reaches its target position. It then re-
duces the utility of unexplored points close to the chosen
target position and uses the reduced utility to compute goal
positions for the remaining robots.

2.2.1 Costs

To determine the cost of reaching the current frontier cells,
we compute the optimal path from the current position of
the robot to all frontier cells based on a deterministic vari-
ant of value iteration, a popular dynamic programming al-
gorithm [2, 9]. In our approach, the cost for traversing
a grid cell ��������� is proportional to its occupancy value�������	� �'� 


. The minimum-cost path is computed using the
following two steps.

1. Initialization. The grid cell that contains the robot
location is initialized with 1 , all others with 2 :3 ��
 �54 / 6 1�� if �7���8��� is the robot position29� otherwise



Figure 2: Typical value functions obtained for two different robot
positions. The black rectangle indicates the target points in the
unknown area with minimum cost

2. Update loop. For grid cells ��������� do:3 ��
 �54 / ������ � +�� - 
 ��
 -� � +	� - 
 � 
 -

 3 ��� � �(
 �
� � � $

� � ��� $ � ����� �������	�	��� � �(
 ��� � �'
��
This technique updates the value of all grid cells by the
value of their best neighbors, plus the cost of moving to
this neighbor. Here, cost is equivalent to the probability�������	�	� ��
 � 


that a grid cell �����8� � is occupied times the dis-
tance to the cell. The update rule is iterated. When the
update converges, each value

3 ��
 �
measures the cumulative

cost for moving to the corresponding cell. The resulting
value function

3
can also be used to efficiently derive the

minimum-cost path from the current location of the robot
to arbitrary goal positions. This is done by steepest descent
in

3
, starting at the desired goal position.

Figure 2 shows the resulting value functions for two differ-
ent robot positions in the leftmost map of Figure 1. The
black rectangle indicates the target point in the unknown
area with minimum travel cost. Please note that the same
target point is chosen in both situations.

2.2.2 Expected Visibility Range

As already mentioned above, a naive approach to multi-
robot exploration would be to move every robot to the
frontier cell that is closest its current position. This how-
ever would not prevent two different robots to approach the
same target position (see Figure 2). To achieve a coordi-
nated exploration of the environment it is highly important
to avoid that two robots choose the same target position (or
one which is in the visibility range of another robot’s target
point). Thus, we need to know which part of the environ-
ment will be covered by the robot’s sensors when it reaches
its designated target position. Unfortunately, the exact area
that a robot’s sensors will cover is unpredictable — other-
wise there would be no exploration problem. In this section
we will devise a heuristic to estimate the covered area. It
is based on probabilistic considerations and has been found
to work well in practice. The key idea of this heuristic is
based on the observation that a robot exploring a big open
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Figure 3: Distance histograms ������� �
! obtained in a small room.
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Figure 4: Distance histograms ������� �
! obtained in a hallway

terrain can cover much larger areas than a robot exploring
a narrow part of the environment.

During exploration we count for a discrete set of distances� - ��"�"�"�� � ) , the number of times # ��� � 
 the distance
� � was

measured by any of the robots. Based on this histogram we
can compute the probability that a cell in a certain distance�

will be covered by a sensor beam and thus will be ex-
plored after the robot reached its target. In essence, we are
interested in the quantity

�����"

which is the probability that

the robot’s sensors cover objects at distance
�
:

�����"
 � $&%('*)+% # ��� � 

$&%(' # ��� � 
 (4)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 200 400 600 800 1000 1200

pr
ob

ab
ili

ty

distance

hallway
small room

Figure 5: Probability , ���-! of measuring at least � given the
histograms in Figure 3 and 4.



The advantage of this approach is that it automatically
adapts itself according to the free space in the environment.
For example, in an area with wide open spaces such as a
hallway, the robots are expected to sense a higher number
of long readings than in narrow areas or small rooms. As an
example consider the different histograms depicted in Fig-
ure 3 and 4. Here the robot started in a large open hallway
and in a typical office room. Obviously the robots measure
shorter readings in rooms than in a hallway. Correspond-
ingly, the probability of measuring at least

� � is almost
one in the hallway whereas it is comparably small in a room
(see Figure 5).

2.2.3 The Target Point Selection Algorithm

Given the expected visible area we can estimate the utility� �(
 �
of frontier cells �7�.����� . Initially, the utility is set to

#
.

Whenever a target point is selected for a robot, we reduce
the utility of the adjacent points in distance

�
according to

their visibility probability
����� 


. The target point is selected
by trading off the utility

� ��
 �
and the cost

3 ���
 � of moving
there. This results in the following algorithm shown in Ta-
ble 1.

1. Determine the set of frontier cells

2. Compute for each robot � the cost
3 ���
 � for reach-

ing each frontier cell

3. Set the utility
� ��
 �

of all frontier cells to 1

4. While there is one robot left without a target
point

(a) Determine a robot � and a frontier cell�7���8��� which satisfy� � � �7�.����� 
%������� � ���	 ��
 

� � 
 
 � 
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 � 
 / 3 � 
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 � 
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(b) Reduce the utility of each target point�7��� �8��� � in the visibility area according to

� � 
 
 � 
 4 � � 
 
 � 
 � � # / ������� �7�.����� / �7� � ��� � � ��� 
�
 (6)

Table 1: The Target Point Selection Algorithm

Please note that in step 4.a this approach chooses the robot
and target point pair

� � � �����8� � 
 with the best overall evalua-
tion. Figure 6 illustrates the effect of our coordination tech-
nique. Whereas uncoordinated robots would choose the
same target position (see Figure 2), the coordinated robots
select different frontier cells as the next exploration targets.

Figure 6: Target positions obtained using the coordination ap-
proach. In this case the target point for the second robot is to the
left in the corridor.

3 Experimental Results

The approach described has been implemented and exten-
sively tested on real robots and in real environments. Addi-
tionally to the experiments with real robots we performed
a series of simulation experiments to get a quantitative as-
sessment of the improvements of our approach over previ-
ous techniques.

3.1 Implementation Details

Our current system uses an efficient implementation of
value iteration. It requires less than .2 seconds until con-
vergence in environments with a size of �������(1�� � as it
is used in the simulation experiments. However, the value
iteration technique described in Section 2.2.1 is a determin-
istic variant of the original value iteration approach [2, 9].
It assumes that the actions of the robot are always executed
with absolute certainty. The advantage of this approach is
that it can be implemented much more efficient than the
original value iteration. To deal with the uncertainty of the
robots motions and benefit from the efficiency of the de-
terministic variant, we smooth the input maps by a convo-
lution with a Gaussian kernel. This has a similar effect as
generally observed when using the non-deterministic ap-
proach: It introduces a penalty for traversing narrow pas-
sages or staying close to obstacles. Therefore, the robots
generally prefer target points in open spaces rather than be-
hind narrow doorways.

3.2 Exploration with Two Robots

The first experiment described in this section is designed
to illustrate the advantage of our coordination technique
over the uncoordinated approach in which the robots share
a map and each robot approaches the frontier position with
minimum cost. For this experiment we used the robots De-
fiant and Yang. Defiant is an RWI B21 robot equipped with
two laser range-finders. Yang is a Pioneer I robot equipped
with a single laser range-finder. The size of the environ-
ment to be explored in this experiment was

#�� � ��� � , and
the size of a grid cell was

#!� � #�� � � � . Each laser-range



Figure 7: Uncoordinated exploration by the two robots Defiant and Yang

Figure 8: Coordinated exploration by the two robots Defiant and Yang

finder covers 180 degrees of the robot’s surrounding. The
range of the laser range-finders was limited to 5m in this
experiment. Figure 7 shows the typical behaviour of the
two robots when they explore their environment without
coordination, i.e. when each robot moves to the closest un-
explored location. The white arrows indicate the positions
and directions of the two robots. Since the cost for mov-
ing through the narrow doorway in the upper left room are
higher than the cost for reaching a target point in the corri-
dor, both robots decide first to explore the corridor. After
reaching the end of the corridor Defiant enters the upper
right room. At that point Yang assigns the highest utility to
the upper left room and therefore turns back. Before Yang
reaches the upper left room Defiant already entered it and
completed the exploration mission. In this example Defiant
explored the whole environment on its own and Yang did
not contribute anything. Accordingly, the exploration time
of 49 seconds is worst in this case.

If, however, both robots are coordinated, then they perform
much better (see Figure 8). As in the previous example, De-
fiant moved to the end of the corridor. Since the utilities of
the frontier cells in the corridor are reduced, Yang decides
to enter the upper left room. As soon as Defiant entered the
upper right room, the exploration mission is finished. In
this case the time needed to explore the whole environment
was 35 seconds only.

3.3 Simulation Experiments

The previous experiment gives only a qualitative illustra-
tion of the different behaviours of coordinated and uncoor-
dinated robot teams. To get a more quantitative assessment
we performed several simulation experiments. We used the

Figure 9: Environment used for the simulation experiments.
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Figure 10: Average time needed by the robot teams to accom-
plish the exploration task.

� � � �(1�� � large environment depicted in Figure 9 which
is an outline of our office environment. We performed ten
different experiments using two and three robots. In each
experiment we randomly chose the initial positions of the
robots in the map. The size of the grid-cells again was#�� � #�� � � � . Each experiment was carried out with and
without coordination. Figure 10 shows the average time
needed to explore the environment by the robot teams. The



error bars indicate 95% confidence intervals. As expected,
even an uncoordinated team of robots is faster than a sin-
gle robot. However, the coordinated robots require signifi-
cantly less time than the uncoordinated robots. Please note
that in this experiment, two coordinated robots take about
the same time to explore the area as three uncoordinated
robots.

4 Summary and Conclusions

In this paper we presented a technique for coordinating a
team of robots while they are exploring their environment.
The key idea of this technique is that it simultaneously
takes into account the cost of reaching a so far unexplored
location and its utility. The utility of a target location de-
pends on the probability that this location is visible from a
target location assigned to another robot. It always assigns
that target location to a robot which has the best trade-off
between the utility of the location and the cost for the robot
to reach this location. Our technique has been implemented
and tested on real robots. The experiments presented in this
paper demonstrate that our approach is able to coordinate
a team of robots so that they choose different target points
during exploration.

Our approach differs from previous techniques in different
aspects. It has an explicit coordination mechanism which
is designed to assign different target locations to the robots.
Some of the previous approaches to multi-robot exploration
either forced the robots to stay close to each other or used a
greedy strategy which assigns to each robot the target point
with minimum cost. This, however, does not prevent dif-
ferent robots from selecting the same target location. Other
techniques only used the straight-line distance to estimate
the travel costs of the robot. According to that, our ap-
proach provides a better coordination so that the task is ac-
complished significantly faster.

Despite these encouraging results, there are several aspects
which could be improved. In this paper we proposed a
greedy strategy to the NP-hard exploration problem. It is
likely that more sophisticated strategies perform better. Ad-
ditionally, one could use improved techniques for estimat-
ing the area that can be expected to be visible when a robot
reaches its target location. Another interesting research di-
rection is to consider situations in which the robots do not
know their relative positions. In this case the exploration
problem becomes even harder, since the robots now have
to solve two problems. On one hand they have to extend
the map and on the other hand they need to find out where
they are relative to each other.
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