FACIAL Recognition On an Autonomous Quadruped Robot

A Thesis

Presented

to the faculty of

California State University, Chico

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

In

Computer Science

by

© Felipe Jauregui Jr.

Spring 2005

FACIAL Recognition On an Autonomous Quadruped Robot

A Thesis

by

Felipe Jauregui Jr.

Spring 2005

APPROVED BY THE DEAN OF THE SCHOOL OF GRADUATE, INTERNATIONAL, AND SPONSORED PROGRAMS:

, Ph.D., Dean

APPROVED BY THE THESIS ADVISORY COMMITTEE:

Reneé Renner, Ph.D., Chair

Benjoe Juliano, Ph.D.
PUBLICATION RIGHTS

No portion of this thesis may be reprinted or reproduced in any manner unacceptable to the usual copyright restrictions without the written permission of the author.
TABLE OF CONTENTS
9ABSTRACT

INTRODUCTION
11
1.1 Introduction
11
1.2 Statement of the Problem
13
1.3 Purpose of the Study
15
1.4 Theoretical Basis and Organization
18
1.5 Limitations of the Study
19
1.6 Definition of Terms
19
REVIEW OF LITERATURE
20
2.1 About the Platform
20
2.1.1 Why the Aibo™ was Chosen
21
2.1.2 Specifics of the platform
22
2.1.3 Programming the Platform
25
2.1.3.1 Aibo™ Operating System and Programming Interface
26
2.1.3.2 Yet Another R-Code Tool (YART)
27
2.1.3.3 Tekkotsu
28
2.1.4 Aibo™ Wireless Communication
29
2.2 Localization and Identification
31
2.2.1 Determination of the Area
32
2.2.2 Navigation of Area
37
2.2.2.1 Representing the Environment
38
2.2.2.2 Navigation
41
2.2.2.3 Object Avoidance
44
2.2.2.4 Localization of Targets
46
2.3 Image Scan Process
46
2.3.1 Scan Of Object
47
2.4 Facial Detection Process
51
2.4.1 Methods of Face Detection
52
2.4.1.1 Biometrics
52
2.4.1.2 Face Detection Using Color
52
2.4.1.3 PCA (Principal Components Analysis)
54
2.4.1.4 Use Of Motion
55
2.4.1.5 Edge Detection
56
2.4.1.6 Representation of Pixels Using Fuzzy Logic
63
2.4.2 Combining Techniques
64
2.5 Facial Recognition Process
64
2.5.1 Sample Data
65
2.5.2 Feature Based Facial Recognition
66
2.5.3 Neural Networks
67
2.5.4 Eigenfaces
70
METHODOLOGY
75
3.1 Face Detection
75
3.1.1 Design of Investigation for Face Detection
76
3.1.2 Sample Data for Face Detection
76
3.1.3 Data Analysis Procedures
78
3.2 Facial Recognition
78
3.2.1 Design of Investigation for Facial Recognition
78
3.2.2 Sample Data
79
3.2.3 Data Analysis Procedures
80
RESULTS AND DISCUSSION
82
4.1 Presentation of the Findings
82
4.1.1 Face Detection
82
4.1.1.1 BuFaLo for Face Detection
83
4.1.1.2 Face Detection Demo for Face Detection
84
4.1.1.3 Real Time Face Detector for Face Detection
86
4.1.2 Face Recognition
87
4.1.2.1 Faces1 for Facial Recognition
88
4.1.2.2 Face Recognition System for Facial Recognition
94
4.2 Discussion of the Findings
95
SUMMARY, CONCLUSION AND RECOMMENDATIONS
98
5.1 Summary of Results
98
5.2 Problems and Additional Platforms
100
5.2.1 Additional Options for the Aibo™
102
5.2.1.1 Stereoscopic Vision
103
5.2.1.2 Additional Sensors
103
5.2.1.3 Video Stream
104
5.2.2 Alternative Platform
105
5.3 Suggestions for Further Study
107
5.4 Conclusion
108
REFERENCES
109
APPENDIX A. Installing and Running Tekkotsu
114
APPENDIX B. MATLAB® Edge Detection Code
118

LIST OF FIGURES

21FIG. 1. Sony© Aibo™ ERS-220A

FIG. 2. Sony© Aibo™ ERS-220A Head
22
Fig. 3. Interface of YART (screen shot)
28
FIG. 4. PC Connecting to the Aibo™ via a Wireless Access Point
29
FIG. 5. First Floor of Mock Museum
36
FIG. 6. Grid Environment
40
FIG. 7. Aibo™ Scan Area
48
FIG. 8. Color image taken with Aibo™
57
FIG. 9. Result from using the Sobel Method on the image in Figure 8.
58
FIG. 10. Result from using the Prewitt Method on the image in Figure 8.
58
FIG. 11. Result from using the Roberts Method on the image in Figure 8.
59
FIG. 12. Result from using the Laplacian of Gaussian Method on the image in Figure 8.
59
FIG. 13. Result from using the Zero-Cross Method on the image in Figure 8.
60
FIG. 14. Result from using the Canny Method on the image in Figure 8.
60
FIG. 15. Color image taken with Aibo™
61
FIG. 16. Result from using the Canny Method on the image in Figure 15.
62
FIG. 17. Result from using the Zero-Cross Method on the image in Figure 15.
62
FIG. 18. Results from using the Canny Method as depicted in Figure 14 and Figure 16.
63
FIG. 19. Sample neural network for JOONE™
68
FIG. 20. Face Detection Test Images
77
FIG. 21. “Database of Faces” classified into sets (s1 – s40) starting from the upper left side going down. From AT&T™ Laboratories
80
FIG. 22. Only Face Detected Using BuFaLo (screen shot of interface)
83
FIG. 23. Faces detected using Face Detection Demo (screen shot of interface)
85
FIG. 24. Examples of detected faces using the Real Time Face Detector
86
FIG. 25. Incorrect face recognition of s10 as s31 (see Figure 21) by the Faces1 application
89
FIG. 26. Incorrect face recognition of s32 as s31 (see Figure 21) by the Faces1 application
89
FIG. 27. Incorrect face recognition of s38 as s32 (see Figure 21) by the Faces1 application
91
FIG. 28. Incorrect face recognition of s37 as s14 (see Figure 21) by the Faces1 application
91
FIG. 29. Incorrect face recognition of s14 as s35 (see Figure 21) by the Faces1 application
93
FIG. 30. Incorrect face recognition of s40 as s18 (see Figure 21) by the Faces1 application
94
FIG. 31. Aibo™ with person of 72 inches height
101
FIG. 32. Image taken by Aibo™ with a line of sight (c) of seventy-two inches
102

LIST OF TABLES

23TABLE 1. Sony Aibo™ ERS-220A Specifications

TABLE 2. Wlandflt.txt Settings from
30
TABLE 3. Target height limits at a = 5 inches
49
TABLE 4. Target height limits at a = 20 inches
50
TABLE 5. Target height limits at a = 35 inches
50
TABLE 6. Results of testing BuFaLo application
83
TABLE 7. Results of testing Face Detection Demo application
84
TABLE 8. Results of testing Real Time Face Detector application
86
TABLE 9. Results of testing the Face Recognition System application
94
TABLE 10. Results of testing the Face Recognition System application
95

LIST OF EQUATIONS
49EQUATION 1. Determination of target height limits

EQUATION 2. Distance of Elastic Points
66
EQUATION 3. Eigenface Calculation 1
71
EQUATION 4. Eigenface Calculation 2
71
EQUATION 5. Eigenface Calculation 3
71
EQUATION 6. Eigenface Calculation 4
72
EQUATION 7. Eigenface Calculation 5
72
EQUATION 8. Eigenface Calculation 6
72
EQUATION 9. Eigenface Calculation 7
73
EQUATION 10. Eigenface Test 1
73
EQUATION 11. Eigenface Test 2
73
EQUATION 12. Eigenface Test 3
74

ABSTRACT
FACIAL Recognition On an Autonomous Quadruped Robot
A Thesis

by

© Felipe Jauregui Jr.

Master of Science in Computer Science

California State University, Chico

Spring 2005

Security is an important part of our everyday lives. Locking the doors to our homes, leaving lights on when we are on vacation or even passing through metal detectors at the airport are all methods of security. Security measures are put in place to aid in the safety of our everyday lives. However, following the tragic events of September 11th, 2001, the effectiveness of security is being examined almost on a daily basis. The discoveries of current security vulnerabilities along with the exploration of new methods are improving our security.
One problem with security is that there is a large amount of wanted criminals who are evading incarceration. These fugitives are free and able to commit further crimes. However, images of these criminals and terrorists are available. The problem is that there are a large number of these images. Therefore, it is a very difficult task for security personnel at locations such as airports and landmarks to memorize all the photographs and descriptions.

As opposed to requiring security personnel to memorize a large amount of images, an efficient application that performs facial recognition could help improve security. Not only would this application be helpful in identifying and locating potential criminals and terrorists, but it could also be used to search for missing persons. Facial recognition could be integrated with surveillance cameras already in place in locations such as airports. The problem with this is that these cameras are stationary and are only as effective as the personnel who monitor them.
The problem with stationary cameras is that surveillance is limited to only those areas where cameras are placed. Also, people can avoid locations with cameras or simply stare at the floor to conceal their face. Basically, these cameras cannot be placed in every nook and cranny of a location. In order to be able to monitor more locations, another method is investigated.

This thesis presents a framework for the process of facial recognition on an autonomous robotic platform. The use of a robotic platform provides the mobility that is not provided by traditional mounted cameras. This paper covers the research of the components needed to implement such an application. Although the application is not implemented, the components necessary to do so are researched and tested. The platform that is used for proof of concept is the Sony© Aibo™. The Aibo™ is made available through the Intelligent Systems Lab (ISL) at California State University, Chico.

CHAPTER I

INTRODUCTION

This chapter of the thesis serves as a precursor to the research in the area of facial recognition on an autonomous robot. The background of security is reviewed, followed by a description of the problem. This is followed by the purpose of the study and how the research is organized. Lastly, the limitations of the study are presented as well as definitions of key terms.
1.1 Introduction

The global community is currently in a state of unrest. We are in a time when people worry about terrorism. Following the tragic events of September 11th, 2001, it is clear that our nation’s security needs to improve. Therefore, it has become important to devise new ways in which to make our borders, buildings, landmarks and especially people be safe. Security is such an important issue, that it became an important item of debate in the 2004 United States presidential race [1].

Examples of security issues that need improvement are found in government buildings, airports, borders and even tourist attractions such as the Statue of Liberty. All of these locations have similar characteristics that make them potential targets for terrorist attacks. These characteristics could vary from anything such as the large amount of daily visitors, to the size of the building and its grounds, and even the subsequent areas in which a person or object could remain hidden. Therefore, vulnerable characteristics make high profile locations ideal candidates for a better security system. Although there are many characteristics that define a particular location’s need for better security, this paper will only concentrate on a few.
One such issue of security is that of security personnel. As it was presented in February of 2004 in periodicals and television broadcasts such as CNN© [2], there is a genuine concern over the amount of training security personnel receive. In order for current methods of security to be effective, the staff must be trained on how to handle different situations that could potentially arise. Another problem aside from training, is that many locations are understaffed. These issues, and more, make it increasingly difficult to have a reliable security system.

The task of monitoring any location can quickly become overwhelming when considering not only the amount of people, but the large areas that must be patrolled. When analyzing an area’s security needs, consideration must be given to places in which an object, or even a person, could be concealed. Due to current security systems having exploitable vulnerabilities, poorly trained personnel, and large areas to monitor, it becomes increasing difficult to monitor locations with cameras alone. This problem becomes even more complicated when those cameras are stationary and are only as effective as the personnel who monitor them.
Given the current state of security, it would not be difficult for criminals and missing persons to blend into crowds within high profile areas such as landmarks, bus depots and airports. However, there are available images of criminals, terrorists and even missing people. These images can be found on the Federal Bureau of Investigation’s website, as well as other sites that mirror the information [3]. The problem now becomes how to use these images in order to identify any of the individuals depicted if they happen to enter any of the discussed high profile areas. However, due to the limited number of security personnel, lack of training and the limits of traditionally mounted cameras, this is not an easy task.
1.2 Statement of the Problem

The problem is to investigate a framework that can be implemented on a robotic platform that is able to locate specific targets in areas. This framework is appropriate for the use of apprehending criminals before they have a chance to strike again, as well as finding missing persons. The proposed security system actively patrols areas autonomously, scanning for wanted and missing individuals. In order to facilitate mobility, the system is implemented on a mobile robot platform. This allows the surveillance of many areas that are otherwise unavailable to stationary cameras.

This surveillance system, implemented on a robotic platform, allows for easy scalability. Thus, given the amount of targets (all people) in a given area, additional surveillance robots can be deployed. However, in occasions of low target rates (fewer people), the number of robots in the area can be reduced in order to conserve resources.

The general approach of this surveillance system is that the roaming robots are constantly navigating about selected areas. As the surveillance robots survey the area, they identify potential targets, a wanted person. In order to identify these potential targets, there needs to be a defined method of homing. In this case, homing would refer to the agent navigating itself autonomously to a target it perceives via sensory input [4].
One consideration in navigating an environment where security is the issue is that the robot must be able to navigate in real time. In a dynamically changing environment, any long periods of time spent calculating the next action is inefficient. Another potential problem is that of noisy images. In this particular case, noise includes anything except the facial region of the target. During the navigation process, the images obtained via sensory input are not going to be perfect. This means that there must be a method of making this data usable [5].

In order to clarify and render the sensory input useful, it is necessary to have a process. The process can be divided into two methods. The two methods encompass a great deal of further analysis. Generally speaking, these steps are the acquisition, and the processing and interpretation of images [6]. However, the problem that needs to be overcome is the process of taking sensory input gathered from multiple sensors and integrating this information in order for it to become useful. This becomes increasingly difficult considering this information will be gathered at different intervals during the navigation process [7].

Once the robot is able to autonomously navigate an area and find targets, it will need to identify a target’s facial region. The identification of a target’s facial region can be done via pattern recognition. In order to accomplish this, samples of targets must first be taken. An extraction of characteristics that define this class of images then commences. Then, when a new sample is introduced, the system determines its degree of membership in this newly created class. This allows the algorithm to focus on the target’s facial region, which includes noise [8].

Once it is determined that the target’s facial region is located, this region is extracted. This extracted region is then stripped of excess noise by using a method such as fuzzy logic [9], [10]. The principle of object recognition could be used in determining which area of the new image is the actual facial region. In order to accomplish this, three steps must be followed: the scene is segmented into distinct objects, each objects position and orientation is determined and finally, the shape of the object is determined [11].
The resulting smaller image could then be processed using a neural network as in [12] or various other methods of soft computing [13]. If a neural network is used, it can be trained with existing images such as the ones provided by the Federal Bureau of Investigation [14]. If one of the images is identified as a wanted or missing person, a system alert is generated. The goal of this project is to investigate the necessary components to create a system that can accomplish facial recognition on an autonomous robot.
The platform that is used for proof of concept is the Sony© Aibo™ [15]. Although the Aibo™ is not an ideal platform to test the facial recognition methods, it is chosen because it has all the necessary components needed for this type of testing. The Aibo™ has mobility and is small enough to move about easily. The aspect of mobility is especially important in small areas with limited room to maneuver. Other important reasons include: its capacity to take photographs, relevant sensors (such as a distance sensor) and the fact that it can communicate wirelessly. Therefore, this platform is acceptable as a method for testing facial recognition methods.

1.3 Purpose of the Study

With readily available images of criminals and missing persons, it is possible that some security systems could automatically scan for these individuals. The main targets would be those that pose a serious threat as identified by the Federal Bureau of Investigation [3]. This same security system could also be actively “looking” for missing persons as well. A person alone would not be able to memorize hundreds, if not thousands of these images. Therefore, a system that could constantly be monitoring an area for these individuals would be beneficial.

A scanning system could potentially keep hundreds of images on record and compare them to individuals who are in its scan zone. This capability could aid in the identification of missing persons, criminals and even terrorists. If identifications are successful, it could save law enforcement time and money. However, another outcome would be that it could prevent a malicious individual or individuals from committing a crime by identifying and thus apprehending them before they are able to strike.

In order for an actively scanning system to be effective, the implementation needs to move away from conventionally mounted security cameras. The reason for this is to gain mobility, as well as access to areas in which cameras are not mounted. Unless cameras are mounted in positions that cover every angle in a building, a mobile application would have more access to areas otherwise not covered. A platform that allows movement as well as maneuverability would be effective in areas that can range in size and capacity. If this system is implemented on a robotic platform, one would gain both mobility as well as easy scalability. Scalability is solved by deploying additional robots.

Although the idea of using a mobile robotic platform for surveillance is not new [16], this paper defines a unique approach to the issue of security via mobile surveillance. The proposed system does not focus on intruders in given areas; instead it constantly scans for specific targets. Other systems concentrate on identifying movement alone, regardless of who the person is. There is currently a facial recognition system developed by Imagis Technologies being used in some airports [17]. However, this system relies on stationary cameras and is only used in interrogating rooms and other locations not accessible to a regular passenger.

A system that simply recognizes an intruder by movement is a useful product. This type of system will sound an alarm if any motion is detected. However, this alarm is triggered regardless of what caused the disturbance. The main difference is that the proposed system scans for people who have already been identified as wanted, regardless of whether it is for criminal actions, questioning or a possible missing persons.

As already mentioned, a product with similar features to the system presented in this thesis is one developed by Imagis Technologies Inc. This company produces a product that allows for facial recognition. However, their current product takes larger databases of images and reduces it to a smaller list of possible matches [18]. The product boasts good results, but is dependent on stationary equipment [19]. The difference in the proposed system is that it is not bound by stationary equipment and uses a combination of techniques that include edge detection and eigenfaces to make image matches.
Another research project that involves the Sony© Aibo™ is called the Autonomous AIBO™ Watchman [16]. This research involves using the Aibo™ to monitor areas in which a potential hazard to humans may exist. This can include a pit or hazardous materials. The difference between the Aibo™ Watchman and the proposed framework presented in this thesis is that the AIBO™ Watchman depends on human input for navigation. Aside from this, the Watchman does not focus on specific intruders, but merely waits for movement in order to identify an intruder.
The proposed framework in this thesis supports the need for an autonomous system. Therefore, there is not a need to increase personnel in order to monitor the robots and their activities. The proposed framework in this thesis will not make identifications based on movement alone, but identify only those individuals who are wanted by authorities. The research of the Watchman demonstrates that the Aibo™ is usable as a proof of concept platform.
1.4 Theoretical Basis and Organization

The individual components that comprise this study are well documented, as is presented in the review of literature. These components include autonomous navigation, face detection and face recognition. The focus of this thesis is to present these individual research areas. This is done in order to propose a method of combining them to accomplish autonomous facial recognition on a robotic platform.

To implement autonomous navigation, face detection and facial recognition on a robotic platform, each of these three components must be analyzed. These resources include the limitation of the robotic platform, as well as the availability and soundness of the data. Therefore, to better utilize these resources, efficient methods of navigation, face detection and face recognition are reviewed and tested.

The hypothesis of this thesis is that the methods of navigation, face detection and facial recognition integrated onto a robotic platform will adequately detect and recognize faces of wanted persons in a crowd. Furthermore, it is hypothesized that the methods of edge detection and a neural network will perform the functions of face detection and facial recognition with acceptable results. This will be decided via investigation and testing of the individual methods. The deciding factors will not only be how these methods perform under general circumstances, but how they perform with the limited data and resources available in this study.
1.5 Limitations of the Study

In terms of the limitations of this research, a comprehensive security system is not defined. Instead, only one component of a security system is analyzed. In particular, this component is that of facial recognition using an autonomous robotic platform. This paper describes a single module that can be incorporated into an existing security system. The proposed module has the capability of being integrated into many existing security systems, thus making them more robust. Although a complete solution is not presented, this thesis does provide the necessary framework to implement a solution.
1.6 Definition of Terms

· CPU – central processing unit
· Goal Point – symbolic point used for traversal
· LAN – local area network
· MAC – medium access control
· MHz - megahertz
· Mobile Agent – robotic platform
· OPEN-R – interface for Sony© robotic platforms
· OPEN-R SDK – component of the OPEN-R SDE
· Potential Target – object that may contain a face
· R-CODE SDK – component of the OPEN-R SDE
· SDE – software development environment
· SDK – software development kit
· SDRAM – Synchronous DRAM
· SOM – self organizing map
· Stereoscopic Vision – use of two cameras for vision
· WEP – wired equivalent privacy
· YART – yet another R-CODE tool
CHAPTER II

REVIEW OF LITERATURE

The research that is presented in this thesis is broken up by the categories that comprise autonomous facial recognition on a robotic platform. These categories include autonomous navigation, scanning of an object, face detection and face recognition. Aside from the investigation of these areas, the Sony© Aibo™ is explored. This exploration of the Aibo™ is meant to introduce the reader to the capabilities and methodologies needed to use the Aibo™ for proof of concept.
2.1 About the Platform

The robotic platform chosen for this investigation is the Sony© Aibo™ ERS-220A (Figure 1) [15]. The Aibo™ was borrowed from the California State University, Chico’s Intelligent Systems Laboratory (ISL) [20]. The ISL is partially funded a grant and is under the direction of Dr. Benjoe Juliano and Dr. Reneé Renner. Therefore, one of the reasons this particular platform was chosen was due to its availability and built-in capabilities.
[image: image1.png]
FIG. 1. Sony© Aibo™ ERS-220A

It is important to understand that this platform would not be ideal for a live implementation. The main reason for this is due to its size and frailty. If deployed in an area with heavy foot traffic, this platform would be easily knocked over, either intentionally or by accident. Also, it would be too tempting of a “toy” to a child, or even an adult. Therefore, logistically, the deployment of the Aibo™ is not feasible.
The occurrence of any of these incidents is not only probable, but could also lead to costly damage. Currently, the Sony© Aibo™ sells in the price range of $1,600 to $2,540 [21]. Therefore, any of the deployed robots would be costly to repair or replace. Even if the platform were to avoid physical damage, it could still be moved by someone, or even have a coat thrown over it. Therefore, these and other actions would limit the effectiveness of the system.

2.1.1 Why the Aibo™ was Chosen

Although the discussion above identifies some of the impracticalities of the Sony© Aibo™ being deployed in an unknown environment, it is still an ideal platform for testing facial recognition because of it built-in capabilities. When factoring in the amount of sensors, actuators and performance available; the Sony© Aibo™ is sufficiently equipped to handle a controlled testing environment. The following specifications show why the platform is ideal for proof of concept.

2.1.2 Specifics of the platform

[image: image2.png]
FIG. 2. Sony© Aibo™ ERS-220A Head

Figure 2 illustrates the location of the infrared distance sensor and the color camera in the head of the Sony© Aibo™ ERS-220A. The distance sensor in particular is placed in a location that is ideal for navigation. Table 1 is a list of the Sony© Aibo™ ERS-220A specifications [22]:

TABLE 1. Sony Aibo™ ERS-220A Specifications from [22]

	Name
	Specifics

	CPU
	64-bit RISC processor

Clock speed 384 MHz

	Components
	Body, Head

Leg x 4 (removable)
Tail

	Main Storage
	32MB SDRAM

	Program Storage Medium
	Memory Stick Media for Aibo™

	Movable Parts
	Mouth x 3

Retractable Headlight x 1

Legs x 3 x 4 legs

	Input/Output

	PC Card Slot Type 2 In/Out

Memory Stick Media Slot In/Out

AC in Power Supply Connector Input

	Input/Output
	CMOS Image Sensor (100K pixel)

	Audio Input
	Miniature Stereo Microphone

	Built-in Sensors
	Temperature Sensor

IR Distance Sensor

Acceleration Sensor

Pressure Sensors

 Head

 Face

 Back

 Legs

 Tail

Vibration Sensor

	Power Consumption
	Approximately 9W (standard operation in autonomous mode)

	Operating Time
	Approximately. 1.5 hours (standard operation in autonomous mode)

	Battery Charging Time
	Approximately 2 hours

	LCD Display

	Time

Date

Volume

Battery Condition

	Operation Temperature
	41-95 degrees Fahrenheit (5-35 degrees Celsius)

	Operation Humidity
	10-80%

	Dimension

	152mm width

296mm height

278mm length

	Mass
	Approximately 1.5kg

As indicated in the specifications presented in Table 1, the ERS-220A’s sensors are more than adequate for the research of facial recognition methods. The built in camera, which is located in the head, is in a good location for taking pictures of faces. The reason for this is that the head is able to pivot to focus on high and low facial regions. The head of the Aibo™ is also equipped with a distance sensor. This is useful data when programming a room navigation algorithm.

The push button sensors could also be beneficial in terms of diagnostics of the Aibo™. These buttons could be used by personnel to signal which Aibo™ they are going to remove for repairs. These sensors could also be used by citizens to identify that there is a problem in the area. However, due to the quantity of these touch sensors, some of them would serve an identical or no purpose at all.

 One of the discussed advantages of this project is that the platform allows the exploration of small or concealed areas. These small areas also have the potential of being dark due to their seclusion. Two components of the platform that can overcome the problems of small areas and darkness are the headlight and temperature sensor. The headlight is mounted on the top portion of the Aibo’s™ head and thus illuminates its viewing area. The temperature sensor could be used to detect differences in temperature that might indicate body heat. This can potentially allow for the discovery of hidden people or objects. However, the sensitivity of the temperature sensor would need to be tested in order to determine its adequacy for body heat detection.
An important factor that must be considered is the energy requirements of the platform. As mentioned above, the Aibo™ is able to operate for approximately one and one-half hours. It would become very tedious and inefficient to require personnel to retrieve the platform and connect it to be recharged. Therefore, an alternative to charging must be employed. The solution to this dilemma is to use the available charging station. This would allow the platform to be programmed to dock at a recharge station when not in use.

Two main disadvantages of the ERS-220A Aibo™ are in the limitations presented by the CPU and memory capacity. Although the CPU has a clock speed of 384 MHz, this still severely limits the efficiency in which applications can be run on the Aibo™. Another issue with the platform is that of its memory limitations. The Aibo’s™ main storage is limited to 32MB of SDRAM and the program size is governed by the size limitation of the supplied memory stick.

Due to these limitations, an alternative computational method must be used. When an Aibo™ is equipped with a wireless Local Area Network (LAN) card, the card allows the robot to communicate wirelessly with another card or an access point on the network [23]. This gives the ability to run programs on a host computer with a higher clock speed and memory capacity. Therefore, the host machine can receive and process data from the Aibo™. Once this data is processed, the appropriate instructions can be sent back to the Aibo™.
2.1.3 Programming the Platform

When purchased, the Sony© Aibo™ does not include any method of programming. Instead, the packaging includes a sheet that describes the accessories that can be purchased. These accessories include software that allows the user to dictate the actions the Aibo™ will perform. This software package is referred to as the Aibo™ Master Studio™ [24].

The software package is limited in the sense that it allows the user to create only sequences of motions and light patterns that are executed by the Aibo™. Therefore, it is not intended to offer a flexible method for directly programming the Aibo™. However, Master Studio is no longer available, nor supported by Sony© [24]. Hence another method of programming has to be examined.
2.1.3.1 Aibo™ Operating System and Programming Interface

The “operating system” that runs the Aibo™ is called the Aperios Kernel™, which is the section of the operating system that provides services to the rest of the operating system. This kernel is a proprietary component of the Aibo™ that is produced by Sony©. The main push of this kernel is that it is reported to be a real-time operating system [25]. This is important in the sense that certain aspects of the operating systems functionality need to occur within a time limit [26].

In order to facilitate the interface of the Aibo™, Sony© developed what is known as the OPEN-R SDE (Software Development Environment). This SDE is further subdivided into three components known as SDK’s (Software Development Kits). The first of these components is called the OPEN-R SDK. This SDK is based on C++ (gcc) and allows the user to create programs that can run the Aibo™. Programs created with the OPEN-R SDK can directly control all components of the Aibo™ [25].

The next SDK component is called R-CODE SDK. This part of the SDE is only available for the ERS-7 Aibo™ platform. The purpose of this component is similar to the OPEN-R SDK. The main difference is that the R-CODE SDK allows the execution of R-CODE scripts rather than the C++ based OPEN-R. The last component of the SDE is known as the Aibo™ Remote Framework. This component is a Windows™ development environment that is a sub-component of Visual C++™. As with the R-CODE component, the Remote Framework is also only available for the ERS-7 Sony© Aibo™ [27].
2.1.3.2 Yet Another R-Code Tool (YART)

The first alternative programming method that is examined is located on the website http://www.aibohack.com. This website offers a unique look at the Aibo™ via reverse engineering and descriptions of alternative programming methods. This site is not sanctioned by Sony©, and therefore offers a different view on the Aibo™. One such alternative method of programming the platform is known as YART (Yet Another R-CODE Tool) [28].

The YART environment is characterized as an easy to use way to learn the basics behind how to program the Sony© Aibo™. As seen in Figure 3, the interface of the program is very easy to interpret. The problem with this environment is that the user is not able to write code to control the Aibo™. Instead, the user is merely allowed to assign actions that will execute when certain conditions occur [28]. Therefore, this would not be an adequate programming environment for developing applications for autonomous facial recognition.
[image: image3.png]
Fig. 3. Interface of YART (screen shot)
2.1.3.3 Tekkotsu

The Tekkotsu project was developed and is currently being maintained by Carnegie Mellon University (CMU). The definition of the Japanese word “tekkotsu” is “iron bones.” The project is described as a framework that allows the user to program robotic platforms. By building on the foundation of OPEN-R, Tekkotsu manages all of the low level tasks and allows the user to focus on the code to control the Aibo™. The coding language of Tekkotsu is based on C++ [29].

The following is a list of some of the modules that are available via the Tekkotsu programming environment: vision processing, wireless networking, walking, head control, and PC aided monitoring tools. The monitoring tools module is known as TekkotsuMon and requires the wireless component of the platform to be enabled and working. This module allows the user to interface with the platform wirelessly. In turn, this allows data to be processed on a host machine and only commands that are sent to the Aibo™ are executed [29].
2.1.4 Aibo™ Wireless Communication

As described in the specifications, the Aibo™ has the capability to communicate wirelessly via a wireless LAN (Local Area Network) card. One method of doing this is with a wireless router acting as the access point (Figure 4) [23]. The main benefit of using the platform’s wireless capabilities is that programs are no longer limited to the small amount of memory and processing power available with the Aibo™. Instead, based on relayed data, intensive computations can be run on a host machine and instructions are then sent back and executed by the Aibo™.
[image: image4.png]
FIG. 4. PC Connecting to the Aibo™ via a Wireless Access Point

In order to utilize the wireless capabilities with Tekkotsu, the wlandflt.txt file, as well as the access point’s settings, must be modified (see Table 2 and the Appendix).
TABLE 2. Wlandflt.txt Settings from [29]
	Name
	Setting

	HOSTNAME=
	Same name as DNS Server (if applicable)

	ESSID=
	Service Set Identifier (SSID) – must be the same as the access point

	WEPENALBLE=1
	0 – Disables Wireless Encryption Protocol
1 – Enables Wireless Encryption Protocol

	WEPKEY=
	Only entered if WEPENABLE = 1

This WEP key must match the WEP key used by the access point

	APMODE=

	0 – Ad-Hoc mode. This is used when an access point is not used (ex. a wireless LAN card for a laptop).
1 – Infrastructure mode. An access point is used.

2 – Auto Detect mode. Will automatically detect which of the two modes is used.

	CHANNEL=
	The channel being used by the wireless network. This is only needed if mode 0 is selected.

	USE_DHCP=

	0 – If the access point will assign the Aibo™ an IP address.
1 – A static IP address will be used for the Aibo™.

	ETHER_IP=

ETHER_NETMASK=

IP_GATEWAY=
	These settings are only configured if USE_DHCP is set to 0.
ETHER_IP – Static IP address

ETHER_NETMASK – Netmask needed for the IP

IP_GATEWAY – Access points IP

The configuration for the access point must match those settings used in the wlandflt.txt file [29]. However, in order to maximize security, a WEP (Wired Equivalent Privacy) key should be used. In conjunction with a WEP key, other precautions, such as MAC (Medium Access Control) address filtering, should also be employed.
Overall, the Sony© Aibo™ ERS-220A serves as an adequate platform for testing facial recognition methods. The testing, however, should be limited to controlled environments. If the platform were deployed in a live, uncontrolled environment, the results may be positive, however, the cost of the Aibo™ would make this too high a risk. Therefore, a more appropriate robotic platform for deployment will be discussed later in this thesis.
2.2 Localization and Identification

Now that the Aibo™ has been explored, it is necessary to discuss how it will move about the area and find potential targets (an object not identified in the internal representation). The reason that localization and identification are so important is because a target’s (an object that contains a facial region) facial region cannot be compared to a database until a potential target is found and scanned. As mentioned previously, it is important to implement the localization and identification of potential targets without the need for human operators controlling the platform via remote control. Therefore, in order to accomplish autonomous localization and identification of potential targets, the mobile agent must be able to navigate an area, avoid objects and detect targets.

In order for the identification of targets to be successful, complete coverage of an area is essential. If this were not the case, then stationary cameras would be a better choice, primarily because of the cost. However, the aim of this thesis is to have a mobile agent that is able to actively search for potential targets in an area. Therefore, the method in which an area is covered is very important.

There are two important types of uncertainty to consider when navigating an area. The first of these types of uncertainty is inherent in data acquired through sensory input. An example of this could be an error in the way data is interpreted, as well as any possible errors in the actual data that was gathered. The second type of uncertainty is that of errors in control. Once an action such as motion is determined, the end results are not always what were expected [4]. These two reasons make it important to focus on navigation in order to have an application that is able to seek out and identify targets.
2.2.1 Determination of the Area

Once a location is identified as an implementation site, the surveillance area must be determined. This surveillance area is the region in which the searching robots will cover and identify potential targets. The decision process to determine this area includes not only which areas are high risk, but also the cost associated with covering this area. The cost will fluctuate depending on, the size of the area and the number of robots required for sufficient area coverage. This discussion is presented to give the reader ideas on how to determine which areas should be chosen for surveillance. Overall, there are three main options to consider in the determination of the coverage area. Due to the limitations of the ERS-220A, stairwells, elevators, etc. will be avoided.
The first of these options is to cover the entire location which includes both the buildings and the surrounding grounds. This particular choice would have the highest cost association. This is because of the need to have more robots to cover a large area. A problem with this option that must be taken into consideration is the effects of the environment on the equipment that is used outdoors. This option would be feasible only if a robotic platform that is capable of withstanding the effects of the environment, such as rain, is used. Because of its frailty, the Aibo™ is not an ideal platform for this option.
The second option is to include coverage for the complete interior of all the buildings on a location. Depending on the number of buildings at a particular location, this option can also become costly. However, an alternative is to have only complete coverage of strategic buildings at a location. These strategic buildings can include those that have higher numbers of visitors or ones that contain valuables. This choice would be left to the security advisors of the facility.
The last option is to cover specific locations within buildings. Although this method is the most cost effective, it is also the most limited of the options. This is because only certain areas are searched by mobile agents. In order to maximize the efficiency of this choice, the coverage locations have to be in strategic areas. These areas are high traffic areas or those that all foot traffic must pass through. In the case of these higher traffics areas, the amount of robots needs to be sufficient to meet the demands of the size of the crowd.

In order to achieve the best results, each location has to customize a coverage plan to fit the locations needs. These needs are dependent on the security needs of the location. An example of this is that an international airport would have higher security issues than a shopping mall. Another consideration is to evaluate the amount of foot traffic a location has. This number would dictate the amount of robots that are needed. Again, these decisions would be made with the assistance of the facilities security advisors.
The average amount of a location’s foot traffic will fluctuate depending on the time of day. Of course, every location’s foot traffic pattern is different. A future consideration would be to investigate the use of neural networks to learn the patterns of foot traffic. Aside from the pattern of foot traffic, the budget of each location also varies. Within each budget, the amount dedicated to security also varies in the percentage of total budget. However, for the purpose of this thesis, budget will not be discussed. Instead, in order to better understand the concept of selecting a building’s search areas, an example will be used. This example is a mock model (Figure 5) that is only used to better understand the selection of areas. It is not intended to be used as a testing environment.
The mock building will model a location with approximately five hundred thousand yearly visitors. The location itself will be described as a museum with national name recognition. The layout that is used as the virtual museum is fictions building. This example is intended to show where potential search areas can be located and is focused entirely within the building.
The first areas of concern are those indicated with a solid square. These areas indicate the entrances to the building. The reason these are such crucial locations is due to the fact that all visitors must pass through these areas. Therefore, it is reasonable to assume that all potential targets pass through this area. However, more areas need to be identified.

The hollow circles on the diagram indicate where search areas should be defined. The first of these three circles is identified around the three entrances. The other defined search area is the oval in the main hallway. This is an area with heavy foot traffic and thus an ideal area to patrol. The areas that are indicated by hollow squares are those areas that are identified in the mock museum as high traffic exhibit rooms. The rooms marked with solid circles are rooms with areas that could conceal objects or people. Therefore, these rooms have been identified as ideal searchable rooms. Again, this is merely a description of a virtual museum that is intended to give an example of how the search areas can be defined.
[image: image5.png]
FIG. 5. First Floor of Mock Museum

One last option to consider is a combination of specific area searching and full area coverage. In order to accomplish this, the robots are programmed to cover the inside of the building. However, instead of covering all the areas equally, the areas that are identified as having a higher priority would be searched more often. This can be accomplished by placing a higher priority to search these higher priority areas as opposed to other areas. This means that the searching robots spend a higher percentage of time in these high priority areas, and yet still cover the entire building.
2.2.2 Navigation of Area

When the area to be covered is determined, the next step is to decide how the mobile agent will autonomously navigate the area. The navigation component of this research is crucial to the success of facial recognition. In terms of autonomous navigational approaches, there are traditionally two broad methods, motion planning and reactive approach [30]. Therefore, the next step is to identify which of those approaches, or combination of the two, would be better suited for the purposes of this research.
The first of these approaches is called motion planning. In this method, there is a single computation to determine a motion that results in moving the mobile agent from its current location to a “goal.” The second approach is known as a reactive approach. This particular approach does many smaller computations to generate singleton moves that advance the mobile agent only one small distance at a time [30].

Although both motion planning and reactive approach [30] are well documented, they both suffer from limitations: costly computational time and limited scope of future movement. Therefore, it can be beneficial to consider an approach that combines the two distinct methods as well as other information already gathered. In this particular example, a great deal about the environment is known. This information, combined with path planning, can result in a more efficient environment traversal algorithm as opposed to ignoring known obstacles.
2.2.2.1 Representing the Environment
In order to implement a navigational algorithm, there is one more concern that needs to be addressed. This concern of navigation is to determine how the environment is represented within the mobile agent. There are several reasons why a robot would benefit from having an internal representation of its environment. The main benefit of internal representation, for the purposes of this thesis, is that navigation is accomplished by the use of this internal information. Essentially, this can be used to determine all of the initial free space prior to people and their belongings entering into the area [31].
In order to acquire an internal representation, a map of the environment can be used. The use of the map is a natural method that is implemented to represent the environment of the robot. This map is used to keep track of both accessible and non-accessible locations. In this case, the use of a map is beneficial because the environment is known [31].

When considering a location like an airport or a national landmark, the idea of accessible space does not often change. Although the aesthetics of the environment change (different displays such as paintings), the areas in which people walk do not change often. Therefore, this knowledge allows the mapping of accessible areas and non-accessible areas. The benefit of mapping is that the possible locations of the mobile agent are known ahead of time and the areas of most importance are determined ahead of time as well.
As discussed above, the locations of where the mobile agent will be traveling are known before its deployment. In a maze environment, the objective is to reach an end goal point. However, the path to the goal in a maze is not known. Therefore, the goal must be found by searching the environment. There are two differences between the environments of a maze and the environments presented in this thesis. In the case of the environments for this thesis, the area is completely known and there is no “one” goal. Instead, the objective is area coverage while finding potential targets.
One approach for surveillance tasks is to partition the environment into a grid (Figure 6). This grid is composed of multiple goal points instead of just one goal as in a maze. These goal points are points within the safe traversal areas. These points are then interconnected via paths. The paths between these goal points are weighted in order to determine the best path to arrive at the next goal point. These points are referred to as goal points to represent that there is no location in the environment that is the ultimate goal. Instead, the goal points represent how the mobile agent will achieve area coverage.
[image: image54.jpg]

FIG. 6. Grid Environment

Figure 6 depicts a small section of searchable area that is filled with the symbolic goal points. These goal points (represented by circles) represent areas that a mobile agent can navigate to. The number of goal points will be high enough to allow the mobile agent multiple possible movements. The distance between these points will be two feet. The distance sensor of the Aibo™ ERS-220A is capable of detecting obstacles at a distance of up to thirty-five inches [29]. Therefore, the path between two goal points can be determined to be open or obstructed.
The squares in the Figure 6 represent those areas that are non-traversable. These are the areas represented in the internal map. The concept of this grid is to have mobile agents navigate only traversable areas. To avoid the detection of objects in the non-traversable areas, all goal points will be three feet away from the borders of non-traversable areas. Since the distance sensor of the Aibo™ ERS-220A is not capable of detecting objects at a distance of three feet and beyond [29], any object in these non-traversable areas will not interfere with the navigation and detections of potential targets.
The paths between goal points are given weights, or costs associated to each of the moves. Aside from the paths having associated weights, each of the goal points will also have an associated goal value. The higher this goal value, the higher the probability that a robot will visit this location. Points with higher values will be those locations deemed more important for surveillance, as they were discussed in section 2.2.1. When the mobile agent is at a goal point, a calculation to determine the next move is made.

The probable environment in which the proposed framework would be implemented is dynamic. In locations such as airports and museums, movement is consistently occurring (at least during operating hours). There is no guarantee that potential targets remain in the same location for any given amount of time. Given this information, there is no area coverage algorithm that can guarantee that all potential targets are located and scanned. Therefore, for purposes of this thesis, a random area coverage technique is proposed. Random area coverage is beneficial because people cannot determine patterns of movements executed by the mobile agents in order to avoid being scanned.

2.2.2.2 Navigation

The environment for which this research is designed is dynamic. Any potential target (object not internally mapped) can potentially move or be moved. Due to this dynamic environment, a random area coverage method is chosen and suggested. The objective of this area coverage method is to move a mobile agent randomly to locate potential targets. Recall that the mobile agent is only able to navigate open areas. All non-traversable areas are mapped internally and are thus avoided. The open areas are partitioned into a grid environment that contains goal points of travel for the mobile agent. These goal points have goal values and are interconnected via weighted paths. Although all mobile agents share the same grid, each agent has its own internal representation of unique path costs and goal point values. In order to determine the current position of the mobile agent, a marking method can be used. As seen in the Sony© RoboCup [24] competitions, markers can be used to determine the position of the Aibo™. Therefore, if rooms are equipped with markers (unique colored pegs) then the agent can calculate its position depending on which marker is in direct line of sight.
A calculation that is used to determine the next move is based on the area of a circle. The current goal point of the mobile agent is used as the center and a radius of two goal points is used to locate other points in the area of the circle. Given all the points in the area, the highest goal point value is used as the new goal point. To ensure that the current point is not visited again in the next poll, its value is changed to be one point lower than the lowest value of the previous poll. At this time, it is necessary to calculate the least cost path to arrive at the new goal point. A method that is used to solve this problem is the A* algorithm [11] where the goal point value is used as the heuristic. This best-first search is used to find the “cheapest” path from the current point to the next goal point. However, if an obstacle is determined to block this path, a new goal point is determined using the current point as the new center. Obstacle avoidance is further discussed in section 2.2.2.3.

To better increase the chances that all areas are covered, as well as aiding in the randomness of the search pattern, a proposed “pulse” method is used. The “pulse” is a charge that is sent through the entire grid network. This charge travels through the paths and randomly modifies both the path costs as well as the goal point values. The “pulse” also modifies the point value of charging stations when the need for the Aibo™ to recharge has arisen. The “pulse” is simply child processes that randomly modify the weights of the paths and goal points.
To increase the possibility that the deployed mobile agents are not all in the same area, each agent has its own representation of goal point values and path costs. In this manner, all agents are moving toward different goal points and cover different areas. The separation of deployed mobile agents is also enforced with barriers. This method involves giving bordering goal points a negative value so they are not chosen as the new goal point.

With each mobile agent having its own representation of point values, a charging method is also developed. According to the product specifications, the Aibo™ is capable of operating for approximately one and one-half hours. Therefore, during the “pulse” that occurs after the forty minute mark, the charging station’s goal point value is given the highest point value. Therefore, the platform will eventually reach a charging station (located at the edge of a room). This is better accomplished by starting the “pulse” in the middle of a room and increasing goal point values as it moves out to the edges. This allows the platform to move toward an edge and then navigate the edge of the room until a charging station is located.

2.2.2.3 Object Avoidance

For navigation to be effective, there must be some form of object detection and avoidance. This is useful in order to determine when an obstacle is in the path of the mobile agent. If an obstacle is found, then a new path must be calculated [32]. Depending on the environment, the type of obstacles varies. Given the environment of the mock museum presented earlier, some obstacles can include people, strollers, bags, as well as other robots.

As discussed before, the key environmental parameters in this thesis are known ahead of time. Therefore, a large amount of obstacles are known prior to the mobile agent deployment. These obstacles include seating areas (such as benches and chairs which are normally bolted down), displays, desks, kiosks, as well as secure areas (i.e. locked rooms). These obstacles, along with areas that the mobile agent cannot traverse (such as stairwells) are avoided. If new objects are added or removed, the only change that is needed is the goal points. Goal points are either added or removed to indicate that a change in the traversable area occurred.

With the platform only traversing manageable areas, the only obstacles left to contend with are those that are potential targets, or have been brought in by potential targets (bags, strollers, etc.). However, all foreign objects have to be treated in the same manner, as an external obstacle. The reason for this is because the mobile agent will need a new path to avoid the obstacle and because this obstacle is a potential target.

When an obstacle is detected, this potential target is first scanned (described in section 2.3) and then a new path must be determined. In order to determine a new path, the mobile agent first marks the current goal point with a negative value and returns to the last visited open goal point. This ensures that the previous goal point is not chosen again. At this time a new goal point is determined. If the mobile agent exhausts all paths from a goal point and is not able to move, an alert is generated. A possible scenario for this includes someone surrounding the mobile agent with luggage.

 In order to detect obstacles, the Aibo’s™ infrared distance sensor is used. The range of this sensor has been determined to be approximately four to thirty-five inches [29]. Given a goal point distance of two feet, this sensor is sufficient in determining if the path to the next point is clear. Since there are moving objects, the mobile agent needs to constantly scan its environment to ensure that its path remains clear.

Another object that can interfere with the movement of the mobile agent is another mobile agent. When multiple agents are deployed, it is important that they do not collide with each other. In larger search areas, it is also important that several mobile agents do not search the same area. Therefore, efforts are made to ensure that these situations do not occur.

The search grid itself is constant for all deployed mobile agents. However, each of the robots has its own values for goal points and paths in the grid. To ensure that robots do not enter the same section; an area is partitioned off. This is easily accomplished by assigning the bordering goal points negative values so that they will not be visited. If these efforts should fail, object avoidance also applies to other mobile agents. Therefore, another mobile agent is seen as an obstacle and is avoided.

2.2.2.4 Localization of Targets

One option for target localization is to analyze all incoming images to try and identify if it is a target (contains a face), but this is computationally intensive. Therefore, given that all internal objects are known ahead of time (chairs, tables, etc.), all detected objects are considered potential targets. Therefore, if only detected objects are considered to be potential targets, the amount of computation decreases. This is especially true because objects already known are not analyzed because the mobile agents do not traverse in that area.

With only potential targets being scanned, the mobile agent does not spend time scanning known obstacles. This “target scan” requires the mobile agent to scan the potential target before it begins to avoid the object as discussed before. Since these potential targets (people, luggage, etc.) can move or be moved, it is not added to the map as an obstacle. Once a potential target is found, a scan of that object must follow.

2.3 Image Scan Process

When the mobile agent is navigating an area, it will not detect any objects in the non-traversable areas. This is known because the Aibo’s™ ERS-220A distance sensor is unable to detect objects farther than three feet away [29]. Therefore, any object encountered is considered to be a potential target. In order to determine if this potential target is a target (contains a face), the entire object is scanned. This scan process is an important precursor to identifying the facial region of the potential target. One method of scanning is to take a picture of the potential target. This picture can then be stripped of excess noise, such as the background and any known objects. Once this image is acquired, the objective is to locate a face in the image.
If a face is detected within the image, then this potential target is now referred to as a target. Instead of developing a method to determine if a potential target is a person, the determination is accomplished during facial detection. If a separate method is used, the potential target is first identified or rejected as being a person. If the potential target is determined to be a person, a search for a face starts. However, in a dynamically changing environment, faces need to be located quickly. As discussed above, objects that are not mapped internally are considered potential targets. Therefore, the potential target is considered a person and thus scanned. During the scan of the potential target, the search for facial regions commences. If a face is not located, it is determined that the potential target is merely an object to be avoided. However, if a facial region is located, then that facial region is examined.
Any object that is not represented in the internal map is considered a potential target. When a potential target is located, there is no standard method to scan that object. Since there is no predefined method for scanning an object (as needed for the framework of this thesis), no testing is performed in this area.
2.3.1 Scan Of Object

When the scan of an object becomes necessary, mobile agent is autonomously navigating the search area actively searching for potential targets. Whenever one of these potential targets is encountered, it is scanned for any facial regions that may be present. The process of this scan involves sending sequential images (via the wireless LAN connection) of the potential target to the host machine for processing. This processing of the images to locate faces is discussed in Chapter III.

When the time for scanning a potential target arises, there are some factors that are considered. The first factor is that the potential target is in front of the Aibo™. This is known because the Aibo’s™ distance sensor only operates when objects are in its field of vision. Therefore, the scan can be made immediately upon the identification of a potential target.
[image: image6.png]
FIG. 7. Aibo™ Scan Area (not to scale)

Figure 7 depicts the Aibo™ when it is in front of a person. When the Aibo™ is standing upright, the camera is approximately nine inches off of the floor. The distance between the platform and the potential target (labeled a) can be in the range of four to thirty-five inches [29]. If the plane, a, is zero degrees (parallel to ground), then the value x, can at most be approximately seventy-five degrees, as obtained from testing. This degree value is limited by how far the head of the Aibo™ can tilt back.

Given the known values in Figure 7, calculations that give the limits of the height of the potential target are made. The formulas (Equation 1) used are as follows (see Figure 7 for values):
b = tan(x) * a

y = b + 9, where y is the height of the potential target
EQUATION 1. Determination of target height limits
The resulting tables (Tables 3, 4 and 5) indicate the range of heights that the Aibo™ is capable of viewing. Considering that the average male height in the United States is estimated to be sixty-nine inches [33], the Aibo™ is capable of scanning the appropriate height that is needed.

TABLE 3. Target height limits at a = 5 inches

	x

Degree of Aibo™ Neck
	tan x
	b

Height of Symbolic Triangle
	y

Height of Object

	0
	0.0000
	0.00
	9.00

	5
	0.0875
	0.44
	9.44

	10
	0.1763
	0.88
	9.88

	15
	0.2679
	1.34
	10.34

	20
	0.3640
	1.82
	10.82

	25
	0.4663
	2.33
	11.33

	30
	0.5774
	2.89
	11.89

	35
	0.7002
	3.50
	12.50

	40
	0.8391
	4.20
	13.20

	45
	1.0000
	5.00
	14.00

	50
	1.1918
	5.96
	14.96

	55
	1.4281
	7.14
	16.14

	60
	1.7321
	8.66
	17.66

	65
	2.1445
	10.72
	19.72

	70
	2.7475
	13.74
	22.74

	75
	3.7321
	18.66
	27.66

TABLE 4. Target height limits at a = 20 inches

	x

Degree of Aibo™ Neck
	tan x
	b

Height of Symbolic Triangle
	y
Height of Object

	0
	0.0000
	0.00
	9.00

	5
	0.0875
	1.75
	10.75

	10
	0.1763
	3.53
	12.53

	15
	0.2679
	5.36
	14.36

	20
	0.3640
	7.28
	16.28

	25
	0.4663
	9.33
	18.33

	30
	0.5774
	11.55
	20.55

	35
	0.7002
	14.00
	23.00

	40
	0.8391
	16.78
	25.78

	45
	1.0000
	20.00
	29.00

	50
	1.1918
	23.84
	32.84

	55
	1.4281
	28.56
	37.56

	60
	1.7321
	34.64
	43.64

	65
	2.1445
	42.89
	51.89

	70
	2.7475
	54.95
	63.95

	75
	3.7321
	74.64
	83.64

TABLE 5. Target height limits at a = 35 inches
	x

Degree of Aibo™ Neck
	tan x
	b

Height of Symbolic Triangle
	y
Height of Object

	0
	0.0000
	0.00
	9.00

	5
	0.0875
	3.06
	12.06

	10
	0.1763
	6.17
	15.17

	15
	0.2679
	9.38
	18.38

	20
	0.3640
	12.74
	21.74

	25
	0.4663
	16.32
	25.32

	30
	0.5774
	20.21
	29.21

	35
	0.7002
	24.51
	33.51

	40
	0.8391
	29.37
	38.37

	45
	1.0000
	35.00
	44.00

	50
	1.1918
	41.71
	50.71

	55
	1.4281
	49.99
	58.99

	60
	1.7321
	60.62
	69.62

	65
	2.1445
	75.06
	84.06

	70
	2.7475
	96.16
	105.16

	75
	3.7321
	130.62
	139.62

The scanning processes itself is simple. Upon identification of a potential target, the scanning process commences. At this point, the host machine begins to search the incoming images for faces. The Aibo™ then begins to move its head upward to the full seventy-five degrees. Once this apex is reached, the Aibo™ moves forward five inches. When the new distance is reached, the head moves back down to the zero degree mark. This scan process requires approximately twenty seconds to complete. Throughout this time, the images being sent to the host machine are analyzed for the presence of faces.

This scanning process continues until the potential target is no longer detected by the Aibo™ (the object has moved), or a distance of twenty-five inches is traveled. This ensures that a stationary object, such as luggage, or an object that is moved is not scanned endlessly. Overall, the process of scanning an object is very straightforward. The scanning is merely a method to send multiple sequential images that may contain faces to the host machine. These images must still be analyzed to detect any possible faces, regardless of the number of faces, movement or orientation.
2.4 Facial Detection Process

When a potential target is scanned, the mobile agent is relaying images to a host machine via the wireless LAN capabilities as presented in section 2.1.4. These images being reviewed by the host machine are then processed to determine if a facial region is located. This process of identifying a facial region is very important to this system. One reason for this is because this part of the process must be expeditious. During the navigation component, speed was not the highest priority; instead, area coverage is the focus. However, once a potential target is scanned, the speed in which any facial regions are detected is important. The reason why it is of such importance is because the potential target may move.
The goal in locating facial regions in this thesis is to be able to do so regardless of the images orientation or the number of potential targets present. This means that the image does not need to be a person in a specific pose, such as a mug shot. Instead, regardless of the image, if a face is present, it should be located regardless of the amount of people in an image, the scale of the image or even the lighting of the image [34].
2.4.1 Methods of Face Detection
To discover new solutions, there is a need to examine existing solutions, as well as other methods of solving a problem. This is the case when researching methods of face detection. For example, one research method that has been used by many is to examine how biological systems are able to accomplish face detection. This is because humans are very good at detecting faces in images. Therefore, the study on how this is accomplished can be useful. Some examples include using color, intensities of color as well as the relevance of the eyes in the face [35].

2.4.1.1 Biometrics

An approach to uniquely identifying humans is through the use of biometrics. Biometrics relies on being able to make identifications based on specific characteristics. These characteristics can include fingerprints, voice, iris, and as is the case for this discussion, entire faces. Although these characteristics may be easy to hide in a moving environment, such as with gloves, scarves or glasses, they are not easy to change [36].

2.4.1.2 Face Detection Using Color
One approach to detecting faces in color images is by the use of color. The most basic concept behind this is in controlling the environment. The manner in which this is accomplished is in the use of a controlled background. For example, all images examined need to have the same background, such as gray.

The next step is to eliminate all the background color, which is known. This process then yields just the region of the face. Although this approach is very easy to program and understand, it is not very practical. The reason for this is that a controlled background is not always available. Therefore, this application is not effective in an environment that this thesis requires [37].
Although the use of a controlled background is not useable in this thesis, the use of color is still an alternate solution. Another approach is through the use of filtering. As opposed to simply removing a controlled background, this approach uses filters in order to distinguish facial regions. The first step is to filter the image in a manner that identifies all regions that may contain human skin. This is accomplished by the use of formulas that adjust the hue and saturation of the image [38].
Once filtering for human skin is performed, all other areas can be removed. The result is an image that should contain only areas of human skin. These areas can include the face, hands or any area not concealed by clothing or obstacles. Regions such as hair and eyes are removed as well. The next step is to determine which of these remaining areas is likely to be the facial region. One method that can accomplish this is to further filter the image. This filtering is done in order to yield a better identification of the regions in the image that contain a face [38].

Facial detection can be accomplished by identifying general characteristics of the human face that exist nowhere else on the body. One such method for this is to remove those regions in the image that are both the brightest and the darkest. These bright and dark areas are most often associated with the eyes, nostrils, mouth and eyebrows. Once these areas are identified, the region that contains the face can be located. This technique works well if the subject is wearing a shirt so that the head is clearly distinguishable. However, coloring, clothing and exposed skin can all prove to be difficult cases to process [38].
2.4.1.3 PCA (Principal Components Analysis)
Another approach to face detection in images is through the use of principal components analysis, PCA [39]. This method is a way of refining data. The objective is to find any patterns in data, even images. Once patterns are located, data that is similar, as well as different, can be identified. This leads to the application of data reduction. Therefore, this technique can used to identify similar colors, specifically the identification of skin color [40].

As opposed to using filtering of color to locate a face, PCA creates a new image for comparison. The newly created image reflects information about the pixels of the image. Specifically, it shows the probability that each pixel can potentially be a piece of skin color, which can compensate for skin color variations. This new image is then used in conjunction with the original image and PCA to determine which areas are the facial regions. This is possible because of the similarity in the distribution of colors in the facial regions [41].

There are two main advantages to using color to detect facial regions. The first of these advantages is that the orientation of the target is not relevant. Secondly, this process has been found to be one of the faster methods of face detection. However, there is also a disadvantage with this method. Depending on the condition of the lighting in image, different results could be reached. In certain environments, this would not pose a problem. Yet, this method would not be as effective in areas that experience moderate changes in lighting patterns [42].
2.4.1.4 Use Of Motion

The previous methods of filtering and PCA use images to locate facial regions. The Aibo™ ERS-220A is capable of sending images for the purpose of face detection. However, the Aibo™ ERS-220A is also able to transmit streaming video to a host to be analyzed as well. Therefore, a review of the methods that use video for face detection is done. One drawback is the lower quality images that the use of video creates. This is also more prominent due to the processing occurring in real-time [35].

The principle behind using motion for face detection is that the head of a person is rarely still. In all sequenced images, there will be some form of movement. Therefore, the basic principle behind this technique is tracking motion in order to identify the head, and thus the facial region is located. However, one major problem with this method is that the subject’s head may not be the only movement that is occurring. For example, someone can be waving or jumping around. If there is any other movement occurring within the field of vision, errors can be encountered [37].

One method of using motion to find facial regions is through the use of “subtraction”. The first step is to capture static images from the video. These sequential images are then examined and compared to determine in which areas the motion occurred. When these areas are found, they are extracted. This is done by using the multiple images and removing all of the areas that remained constant [43]. However, the unresolved problem is that motion other than the head can be occurring. Therefore, a method to determine which of these moving regions is the face is still required. This can be accomplished by using other techniques such as filtering.

To use motion for facial detection and overcome the problem of multiple moving objects, the use of movements that occur in the face can be used. One solution to this is to concentrate on the eyes. In order to maintain moisture in the eyes, a person must consistently blink. This action is involuntary and both eyes blink at the same time. Therefore, the knowledge of this pattern can be used in order to identify where the eyes, and thus the face is located [44].

Another thing to consider is that the eyes are symmetric to each other. Knowing this, it is possible to determine not only where the region containing the face is, but its orientation as well. This technique also requires the identification of movement in sequential images. This is accomplished via subtraction of the sequential images and examination of the results for symmetric patterns of movement [44].
2.4.1.5 Edge Detection

An alternate method of face detection is the use of edge detection. In this method, the algorithm involves searching for specific types of edges. In this particular case, these edges include those which are distinct to the face. Specifically, those edges formed in the mouth, nose and the eyes have very distinct edges. When these edges are located, they can provide an orientation and location of any facial regions in the images [45].

To better understand edge detection, further discussion is necessary. In order to facilitate this discussion, visual examples are used. One way to find the edges of an image is through the use of MATLAB®. In particular, the use of the edge function (a function available in MATLAB®) allows the edges in an image to be determined. MATLAB® offers six different variations of the edge function [46]. The six methods are as follows:

1) Sobel Method

2) Prewitt Method

3) Roberts Method

4) Laplacian of Gaussian Method

5) Zero-Cross Method

6) Canny Method

Each of the methods potentially yields different results [46]. In order to understand the effectiveness of these methods, examples are given. These examples are up-close pictures that would not be typical if this research were implemented. The images are only intended to demonstrate the difference in the MATLAB® edge function variations. The MATLAB® code used to invoke these edge detection functions is shown in the appendix.

The first step is to get the image. The image was taken using the Aibo™ at a distance of approximately ten inches (Figure 8).
[image: image55.png]
FIG. 8. Color image taken with Aibo™
Once the image is loaded, the next step would be to convert the color image into a black and white image. This is necessary as the edge functions in MATLAB® only accept black and white images as a parameter. The last step is to find the edges of this new black and white image using the various techniques.

[image: image7.jpg]
FIG. 9. Result from using the Sobel Method on the image in Figure 8.

The result from using the Sobel method (Figure 9), notice that the majority of the details of the face are missing. There are faint outlines of the edge of the face, but this is not complete. The characteristics that are visible are the eyebrows, bridge of the nose and traces of the mouth. Given these results, it would be difficult to locate patterns that are only present in the face and nowhere else in the image.
[image: image8.jpg]
FIG. 10. Result from using the Prewitt Method on the image in Figure 8.

The result from using the Prewitt method (Figure 10) is virtually identical to the result obtained by the Sobel method. Therefore, the use of this method would also make the detection of the face difficult.
[image: image9.jpg]
FIG. 11. Result from using the Roberts Method on the image in Figure 8.

In the result from using the Roberts method (Figure 11), notice that the majority of the details in the face are missing. The only small characteristics that can be seen are the mouth and part of the nose. As with the Prewitt and Sobel methods, the Roberts method does not yield the results needed for face detection.
[image: image10.jpg]
FIG. 12. Result from using the Laplacian of Gaussian Method on the image in Figure 8.

The Laplacian of Gaussian method (Figure 12) is the first method that yields significant results. In this method, details of the edge of the face, ear, eyes, nose, mouth and even the forehead are visible. Notice that there are enough details of the face to begin extracting patterns. For example, the pattern of the eyes and nose are very distinct in relation to the rest of the image.
[image: image11.jpg]
FIG. 13. Result from using the Zero-Cross Method on the image in Figure 8.

The Zero-Cross method (Figure 13) yields results virtually identical to the Laplacian of Gaussian method. Again, the details that are most prominent in this image are those formed in the eyes and nose, especially in the bridge of the nose.

[image: image12.jpg]
FIG. 14. Result from using the Canny Method on the image in Figure 8.

Notice that the Canny method (Figure 14) yields the best overall results. Although there is lost detail in the forehead region, more detail is gained in the region of the nose. The shape of the mouth is almost complete in this image. Therefore, the pattern formed by the eyes, nose and mouth can be used to locate faces in an image.

The resulting images show that not all of the methods would be ideal for this application. For example, the Sobel, Prewitt and Roberts methods all yield very little information about the facial region. However, the Laplacian of Gaussian, Zero-Cross and Canny methods all result in detailed edges of the face. In particular, the Canny method gives the greatest detail of the face.

Given another example (Figure 15) using the Canny and Zero-Cross methods shows a comparison on how the facial regions are interpreted. The Zero-Cross method is used because it and the Laplacian of Gaussian method yielded virtually identical results.
[image: image56.jpg]

FIG. 15. Color image taken with Aibo™
[image: image13.jpg]
FIG. 16. Result from using the Canny Method on the image in Figure 15.

Notice that the result from using the Canny method (Figure 16) in this example also yields the most detail. The eyes, nose and mouth are all distinct and visible.

[image: image14.jpg]
FIG. 17. Result from using the Zero-Cross Method on the image in Figure 15.

The Zero-Cross method (Figure 17) in this example image yields little detail of the eyes. The nose and mouth are better outlined, but are not clearly recognizable as in the Canny method.

If the results from using the Canny method (Figure 14 and Figure 16) are examined together (see Figure 18), a resemblance of how features are represented is seen. The eyes, nose and mouth regions between the samples have similar characteristics. Therefore, these edges and shapes can be used to identify facial regions. This can be accomplished via pattern detection.
[image: image15.jpg][image: image16.jpg]
FIG. 18. Results from using the Canny Method as depicted in Figure 14 and Figure 16.
2.4.1.6 Representation of Pixels Using Fuzzy Logic

All the discussed techniques of face detection describe several methods of analyzing and comparing images. In order to analyze and better compare images, there must be a method to represent these images in a meaningful manner. One approach to represent the fuzziness of an images pixels is via fuzzy singletons. Each of these singletons can be a representation of a pixel’s degree of membership within categories, such as brightness or darkness [47]. In order to keep track of these singletons, a matrix is used to represent the original image. The definition of the membership functions depend on the specific face detection technique used (such as color or edge detection). These functions dictate the degree of membership each pixel has in each category and can thus be used to process the image [9]. For example, a membership function can represent the pixels as to their membership in the classification for human skin [47].
2.4.2 Combining Techniques

All of the previously discussed methods of face detection have tradeoffs. Therefore, a combination of the methods can yield a better algorithm. In this manner, those aspects that make the technique vulnerable to errors can be avoided. One application by Darrel, et al. [48] makes use of stereoscopic processing, color and patterns to accomplish face detection. The process is broken down into three main steps. The first of these steps is to use stereoscopic processing (which is not available on the Aibo™) in order to separate any movement occurring in the scene (this can also be accomplished without stereoscopic-vision by merely using lower quality images). The next step is to use color, in particular skin color, in order to distinguish which of these moving objects are likely to be moving body parts. Once these objects are distinguished, the last step is to use pattern detection of face edges in order to determine which of the parts can be the face [48].
Since the Darrel et al. [48] method involves stereoscopic vision; it is not applicable to the Aibo™. However, a variant combination of these techniques can be achieved on the platform. The only modification that needs to be made is in the use of stereoscopic vision. Although it is not as efficient as stereoscopic vision, motion-based detection can be accomplished with only one camera. Therefore, this combination of techniques can be implemented with the Aibo™. An investigation of these presented methods of face detection is given in the methodology section.
2.5 Facial Recognition Process

As with the face detection, the process of recognizing the face is also heavily dependent on speed. The reason for this is simple, the faster a target is identified as a match in the FBI database [3], the faster authorities can be dispatched to the area for verification and possible apprehension of the subject. It is crucial that the facial recognition process be as accurate as possible.

When an identification is made, it is essential that the match is accurate. If the identification is false, then there can be potential consequences. If a person is falsely approached for investigation, they can decide to pursue litigation against the agency that is accusing them. This is especially true if an innocent person is subjected to further investigation, and thus caused to be late or even results in mental trauma. Although this is an extreme case, at the very least the time it takes to verify the identity of the person is wasted. Therefore, it is important that all identifications are fast and accurate.

2.5.1 Sample Data

Regardless of what method is used for the facial recognition process, the raw sample data (images) remain constant. This is the data that is used as a comparison for those targets (faces) found in the search area. The main source of these images would be from the Federal Bureau of Investigation (FBI) criminal database [3] or other sources such as the America’s Most Wanted website [49]. These databases also include images of missing persons as well.

One problem is in the number of available images for each target. The number of pictures for each wanted or missing person can vary. In most cases, there is only one available image. This becomes a concern when accuracy is an important issue. The potential for error is further increased by the varying quality of the available images. For example, if this data is used to train a neural network, one image per case would not produce a reliable network as having several images of each target. Therefore, other methods of face recognition are discussed. If the framework presented in this thesis were implemented, an option to consider would be to generate additional images from the original source image, for example, adjusting the lighting of the image.
2.5.2 Feature Based Facial Recognition

One method of facial recognition is feature-based facial recognition. A particular method of feature based recognition is known as Elastic Matching. The principle of this method is to use the distances of key features in the face. The first step is to locate the corners of key facial features such as the nose, eyes and mouth. These distances are then compared to sample faces of the subject for identification [50].

Once the specific points are selected, the distances are calculated. Once the distances are calculated, they are compared to the distances derived from the images on file. This calculation can vary. However, the easiest method of finding the distance is simply by taking the absolute value of the difference of two points within the sample image and the testing image (see Equation 2).
Abs(Point X – Point Y)

EQUATION 2. Distance of Elastic Points
Although this calculation is simple, it does not always yield results that are able to identify a positive match [51].

A more recent method of Elastic Matching is known as Elastic Bunch Graph Matching [50]. This method is an extension of Elastic Matching. The fist step is to plot the face on a graph. Points of interest, such as the nose, eyes and mouth, are represented by nodes. All edges are then labeled as two dimensional vectors that indicate distances. The nodes each contain forty “jets”, which contain the phase and magnitude information of the face and distances [50].

With node of the face plotted on a graph, facial recognition can be attempted. In order to accomplish this recognition, a face bunch graph is populated with the faces that are used for recognition. This face bunch graph is an object that resembles a stack. Within this object, the jets of all faces are contained within the nodes. When a new face is introduced, a graph is placed on the new image. This graph is placed by using the best matching jet in the stack. Once this new graph is in place, it is compared to each of the images in the stack. If a match is found, then, according to Elastic Bunch Graph Matching, a proper identification was made [50].

2.5.3 Neural Networks

Neural networks are used to solve many different problems. The principle of neural networks is pattern recognition [52]. Facial recognition then falls into the domain of pattern recognition. The network is trained to recognize patterns in the face that are used for identification [53].

One type of neural network that is used for facial recognition is a Self Organizing Map (SOM) network [54], [55]. The SOM is also known as a competitive algorithm. The reason for this is because the input pattern is only represented by one unit. All other units are represented by zero. In other words, only the unit with the closest weight represents the input [56].

To better understand the concept, an example is used. This particular example is a modification made to illustrate image recognition by using a sample network available with the JOONE™ package (Figure 19) [57]. The original network can be trained to recognize two characters, A and B. The modifications made are explained in the next section.
[image: image17.png]
FIG. 19. Sample neural network for JOONE™ [57], modified for image recognition

The overall design of the network is a SOM/Kohonen network [54]. The first layer of the network is the input layer. The next layer is a linear layer. This layer is used as an adaptive filter [58]. The number of inputs of this layer is eighty-one. This number can be modified if needed. Each input is used as a representation of a pixel in the image. Therefore, the inputs vary as the number of pixels in the images is changed depending on the quality needed by the application [59].

The number of pixels in the input image must match the number of inputs. This standardization of the number of pixels is accomplished during face detection of an image. Once the face is detected, it is extracted and compressed to eighty-one pixels (for the purposes of this example). As long as the training data and field data are processed in the same manner, this does not pose a problem. One factor to consider, is that the higher the amount of pixels, the more information that is used to make an appropriate match. However, this also means there will be more data to process, thus making this component of the application take longer to complete. This is ultimately a decision of accuracy versus speed.

The second and third layers are connected with a Kohonen synapse [54]. The purpose of this synapse is very important to the network. The synapse is mapping the outputs of one layer to the next layer’s inputs. An output of a random number is mapped to a specific number of inputs. These inputs are also weighted. Once the data has passed through this synapse, it is all mapped to the same locations, thus normalizing all data regardless of the number of inputs [60].

 The third layer is known as a “winner-take-all” layer. This layer is composed of twelve neurons. Each of these neurons represents one image set. A set is a collection of the same target, with different conditions. For example, this set is many different pictures of the same person. In this sample neural network, the number of sets that are used to train the network is twelve. The number of pictures per set is left to the user. The “winner-take-all” layer takes the output that receives the highest level of input and that will be the only unit that receives the value. All other units are assigned a value of zero [61].

The last layer, the output layer, is the last component of the network. This layer specifies were the results are stored. This simple neural network is an example of an image recognition network. However, it is not the most efficient network because of the complex and large images, and thus would not be a good choice for this particular application [55].

For the purposes of the framework presented in this thesis, an alternative to a SOM/Kohonen network [54] would be to use a variation of the backpropagation learning algorithm. This type of learning algorithm can be very effective when complex images are used [62]. One problem with this method is that the training is very slow. This is especially true because of the large amount and quality of the images. This training is further intensified by the large amount of training iterations. However, the training of the network can be done offline and thus it is not a concern. Also, this concern is also overshadowed by the fact that once the training is complete, the network operates well [63].

For the purpose of facial recognition, a Multilayer Neural Network can be appropriate. This is especially true when it is used in conjunction with backpropagation training [64]. However, this technique may not work well with the framework presented in this thesis. A reason for this is because of the amount of training data that is available. There is rarely more than one available image per case in the FBI criminal database [3] that can be used for training [64].
2.5.4 Eigenfaces
Another method of facial recognition is through the use of eigenfaces [39]. Eigenfaces are comprised of many faces that form a set which includes characteristics of all the faces. A face is composed by combining certain aspects (eigenfaces) from different faces. The benefit of using eigenfaces is that the amount of required memory is less than that of a neural network [65].
Eigenfaces are comprised of many eigenvectors. These eigenvectors are basically non-zero vectors. However, when an operation is performed, they will always yield a multiple of themselves. This multiple is known as an eigenvalue, or a scalar. This scalar is still associated with the original eigenvector (Equation 3) [39].

The following is a list of the steps for the construction of eigenfaces from Turk and Pentland [39]. The first step is to obtain the set of images that is used for identification. These images are stored in a vector, which is then placed into a set (Equation 3).
S = { Γ1, Γ2, Γ3, …, ΓM }
Where:

S is the set of vectors

Γ is a vector containing an image
EQUATION 3. Eigenface Calculation 1
Once the set is complete, further steps of calculations are required [64].

The next step is to calculate the mean image from this set of images. This is simply a summation of the images in the set divided by the total number of vectors in the set (Equation 4) [65].
[image: image18.png]
Where:

Ψ is the mean of all images

Γ is a vector containing an image

EQUATION 4. Eigenface Calculation 2
When the mean image is computed, the difference between the mean image and the new image is taken. This is done by subtracting the mean image from the input image (Equation 5) [39].

Φi = Γi – Ψ

Where:

Φ is the difference

Ψ is the mean of all images

Γ is a vector containing an image
EQUATION 5. Eigenface Calculation 3

After this subtraction is complete, the distribution of the data is determined. This distribution is represented by perpendicular vectors, or orthonormal vectors. Principle component analysis is used on the set of vectors to represent the distribution. To perform the computation, the kth vector is used. This calculation is computed by taking the summation of the square of the calculated difference multiplied by the kth vector. This value is then divided by the total number of images in the set (Equation 6) [39].
[image: image19.png]
Where:

λ is an eigenvalue

u is the data distribution of vectors

Φ is the difference of Ψ and Γ (see Equation 5)
EQUATION 6. Eigenface Calculation 4
The calculation is limited by the maximum value of the following (Equation 7):

[image: image20.png]
Where:

u are eigenvectors

EQUATION 7. Eigenface Calculation 5
 The vectors uk are known as the eigenvectors and the calculated scalars λk are the eigenvalues [39].

The eigenvectors and the eigenvalues make up the covariance matrix (Equation 8).
[image: image21.png]
Where:

C is the covariance matrix

Φ is the difference of Ψ and Γ (see Equation 5)
EQUATION 8. Eigenface Calculation 6
Since the eigenvectors are computed, it is now possible to obtain the eigenfaces. This is accomplished by taking the sum of the difference previously calculated, and multiplying it by the eigenvector (Equation 9) [65].
[image: image22.png]
Where:

u,v is the eigenvector

Φ is the difference of Ψ and Γ (see Equation 5)

EQUATION 9. Eigenface Calculation 7
This result of Equation 8 is used to compute the eigenfaces needed for image recognition. [39].

With the calculation of the eigenfaces complete, images can be tested to see if they can be recognized. This process is very similar to the process of calculating the original eigenfaces. The first step is to take the image and calculate the eigenface properties. The difference between this image and the original mean image calculated is taken. This result is then multiplied by the eigenvectors (Equation 10) [65].
[image: image23.png]
ω is the eigenvector weight

u is the eigenvector

Ψ is the mean of all images

Γ is a vector containing an image

EQUATION 10. Eigenface Test 1
The values from this multiplication are stored in a vector (Equation 11).
ΩT = [ω1, ω2, …, ωM]

Where:

Ω is a vector

ω is the eigenvector weight

EQUATION 11. Eigenface Test 2
These values are used as weights in further calculations. These weights represent how each eigenvector comprises the input face. In order to find out which eigenface, if any, corresponds to this new introduced image, the kth vector is used. This kth vector describes the kth class. One method of accomplishing this is by minimizing the straight line distance of eigenvectors (Equation 12) [39].

[image: image24.png]
Where:

ε is the minimized distance

Ω is a vector containing weights

EQUATION 12. Eigenface Test 3
This result of Equation 12 is then compared to the thresholds chosen earlier based on the created eigenvalues. These values are chosen depending on the earlier calculations of the eigenvalues. If the value is less than the first threshold, then the face belongs to this face class. If it is greater than this value and smaller than the second value, then the face is not in the face class. However, if the value is above both thresholds, then the image is not a face, according to the Eigenfaces method [39]. This result indicates that there was an error in the face detection process [65].
CHAPTER III

METHODOLOGY

The focus of this thesis is on the investigation of facial recognition on an autonomous robot. As such, the topics of navigation, target scanning, face detection and facial recognition have been introduced. This introduction presented a review and methods of accomplishing navigation, target scanning, face detection and facial recognition. In this thesis, these are the components identified as necessary to complete facial recognition on a robotic platform. In this section of the thesis, the design of the investigation, treatment and the data analysis procedures are presented. These discussions are broken down into the areas of face detection and facial recognition (as these are the areas that are tested). The proposed methods of navigation and target scanning were presented in Chapter II. The results of testing face detection and facial recognition are presented in Chapter IV.
3.1 Face Detection

The only objective in the face detection process is to accurately locate all faces within an image. This section presents the design of the investigation, sample data and data analysis procedures for the presented methods of face detection. The methods that are chosen for testing are PCA [39], edge detection [45], as well as a combination method that uses PCA and a neural network [12]. These methods are tested through the use of existing tools. Because of the limitations presented in Chapter II, face detection accomplished by color was not tested.
3.1.1 Design of Investigation for Face Detection

The testing of PCA, edge detection and a combination method involves using existing tools that perform face detection. The testing is intended to show how the three different methods compare to each other given the same testing variables and images. To test the PCA method, a tool called BuFaLo, by Fritze is used [66]. The edge detection method is tested using the Real Time Face Detector application by Fraunhofer-Gesellschaft Inc. [67]. The tool used to test the combination methods of PCA and a neural network is the Face Detection Demo by Garcia and Delakis [68].
3.1.2 Sample Data for Face Detection

The same data was used for the testing of the face detection methods in order to yield comparable results. The images are taken with the Aibo™ at varying distances that are longer than twelve inches, but no farther than thirty-six inches. These distances were chosen to correspond with the ERS-220A’s distance sensor capabilities. This was done because of the limitation of the ERS-220A as presented in section 5.2. The TekkotsuMon [29] application is used to capture the images via the Aibo™. The Aibo™ is placed on a table and the head of the Aibo™ is moved (using the Tekkotsu head control) from left to right in order to capture the sequential images of the moving subjects. Figure 20 shows the set of images that is used for testing.
[image: image25.png] [image: image26.png] [image: image27.png]

 a

b

 c

[image: image28.png] [image: image29.png] [image: image30.png]

 d

e

 f

[image: image31.png] [image: image32.png] [image: image33.png]

 g

h

 i

[image: image34.png] [image: image35.png] [image: image36.png]

 j

k

 l
[image: image37.png]
m
FIG. 20. Face Detection Test Images
3.1.3 Data Analysis Procedures

Testing is performed using the thirteen gathered images. In each case, the image is analyzed individually. The possible outcomes are: correct face detection, false detection, or no detection. For each of the three tested tools, the default settings and instructions are followed. No modifications of any kind are made to the tools or images used. Now that the testing methods for face detection have been discussed, the design of the facial recognition testing is presented.
3.2 Facial Recognition

The objective in the facial recognition process is to accurately identify faces of wanted and missing persons. This section presents the design of the investigation, sample data and data analysis procedures for the methods of facial recognition. The methods that are chosen for testing facial recognition are eigenfaces and a neural network. The way in which these methods are tested is through the use of existing applications. Because feature based face recognition is a primitive form of eigenfaces, only eigenfaces and a neural network are tested [39].

3.2.1 Design of Investigation for Facial Recognition

The testing of these methods involves using existing applications that perform face recognition. The testing is intended to show how the different methods compare to each other given the same test cases. The neural network method is tested using the Faces1 application by Dmitry [12], which uses a Multilayer Perceptron (MLP) [69], which is a feed-forward neural network that uses the brightness pixels of image and the number of input units is equal to number of pixels. To test the eigenfaces method, the Face Recognition System by Rosa is used [70].
3.2.2 Sample Data

To conduct all tests equally, the same data is used for the testing of the face recognition methods (eigenfaces and a neural network). At this point in the framework of the thesis, the testing images are only of the facial regions. The reason for this is because the images have already been subjected to the face detection process. Therefore, only the facial regions are extracted and used for the facial recognition process. The images that are used are of facial regions from the “Database of Faces” (formerly “ORL Database of Faces”), by AT&T™ Laboratories, Cambridge [71]. These images are made available for testing in order to provide benchmarking information for the subject of face recognition. There are forty different image sets and each set contains ten images. The images were taken with varying conditions such as lighting, glasses and orientations of the face. Therefore, the set of images is a good choice for testing face recognition. Figure 21 shows the set of images that are used for testing.
[image: image38.png]
FIG. 21. “Database of Faces” classified into sets (s1 – s40) starting from the upper left side going down. From AT&T™ Laboratories [71]
3.2.3 Data Analysis Procedures

The testing is done using different amounts of images per set for training purposes (Figure 21). For the neural network application, the following testing is done. The first experiment is done using two-hundred images for training (the first five images of each set), and forty images for testing (the sixth image of each set). Using these variables, two tests are run. The reason this amount of training data was used is because this was the highest amount of available for one of the subjects in the FBI criminal database [3]. The first test is to train the network for only ten epochs and in the second test, the network is trained for one-hundred epochs. Although training for the network for only ten epochs is not adequate for training purposes, the results are presented to illustrate that further training can lead to better results. Therefore, if the neural network approach for facial recognition is used, the amount of training epochs should be experimented with to yield better results.
The second set of tests is done using forty images for training (the first image of each set), and forty images for testing (the second image of each set). The reason this amount of training data was used is because the average number of images available for each subject in the FBI criminal database [3] is only one. Using these variables, two tests are run. The first test is to train the network for only ten epochs and the second test is trained for one-hundred epochs. No modifications of any kind are made the network parameters or the testing images used.

For the eigenfaces tool, the first test is done using two-hundred images for the construction of the eigenfaces (the first five images of each set), and forty images for testing (the sixth image of each set). The second test is done using forty images for the construction of the eigenfaces (the first image of each set), and forty images for testing (the second image of each set). No modifications of any kind are made to any of the applications or images used.
CHAPTER IV

RESULTS AND DISCUSSION

Now that the methodology of the testing has been introduced, the results of face detection and facial recognition are presented. These are the components identified as needed to complete facial recognition on a robotic platform. This chapter is divided into the presentation of the findings and the discussion of the findings.
4.1 Presentation of the Findings

In this section, the results of the testing and research are presented. In the case of navigation and object scanning, proposed methods are given. For the methods of face detection and face recognition, the results of the testing are presented.
4.1.1 Face Detection

Recall from chapter III that methods of accomplishing face detection were presented. According to the research, the most promising techniques include: PCA, edge detection, and combination methods. To test the PCA method for face detection, an application called BuFaLo [66] is used. The tool used to test the combination methods of PCA and a neural network is the Face Detection Demo by Garcia and Delakis [68]. It is important to realize that the details of this tool are not discussed by the developers. Instead, as a user, an image is submitted online and the results of face detection are given. The edge detection method is tested using the Real Time Face Detector application [67]. As with the Face Detection Demo, the Real Time Face Detector does not give any details on how the algorithm is applied with edge detection.
4.1.1.1 BuFaLo for Face Detection

The following is a table (Table 6) presenting the results of testing the BuFaLo application with the thirteen test images.
TABLE 6. Results of testing BuFaLo application

	Test Image
	Result of Test

	Figure 20d
	Face detected (1)

	Figure 20a – 20c, 20e – 20m
	Face not detected (12)

The results of the face detection testing performed with BuFaLo are not satisfactory. Of the thirteen images that were tested, only one of the images resulted in a positive face detection. This correct face detection was on Figure 20d (see Figure 22). In all other images, no faces were detected. This gives an accuracy percentage of 7.69 percent. These poor results are indicative that another application should be considered.
[image: image39.png]
FIG. 22. Only Face Detected Using BuFaLo (screen shot of interface)

 The orientation of the people in the images is a possible source of error in this application. In some cases, the face is turned to the side and there is only a profile visible as in Figure 20f. However, notice that the subject in the identified image in Figure 22 (see Figure 20d) is also slightly turned to his right. The possibility of profiled faces being the cause of the poor performance is also disputed with Figure 20b, which contains the subject looking almost directly at the Aibo™, thus limiting the amount of profile. This face, although fully frontal, was not detected. Recall from Chapter III that PCA was dependent on using the probability that pixels belong to a class, for example human skin. Therefore, the limited lighting in the images can also affect the results. Overall, the obtained results indicate that the other methods of face detection should be explored.
4.1.1.2 Face Detection Demo for Face Detection
The following is a table (Table 7) presenting the results of testing the Face Detection Demo application with the thirteen test images. Recall that this method uses a combination of PCA and a neural network.
TABLE 7. Results of testing Face Detection Demo application

	Test Image
	Result of Test

	Figure 20b – 20e
	Face detected (4)

	Figure 20a, 20f – 20m
	Face not detected (9)

The results obtained by testing the Face Detection Demo were better than those obtained by using the BuFaLo application. Of the thirteen images that were tested with the Face Detection Demo, four faces were detected (see results in Figure 23). These identified faces were Figures 20b – 20e. This gives an accuracy of 30.77 percent. Although this result is better than the result obtained using BuFaLo (7.69 percent), the results are still not significant. With an accuracy of only 30.77 percent, the number of detected faces located in images is too low to warrant using the Face Detection Demo application.
[image: image40.jpg] [image: image41.jpg]

 a

 b
[image: image42.jpg] [image: image43.jpg]

 c

 d
FIG. 23. Faces detected using Face Detection Demo (screen shot of interface)

The results of the Face Detection Demo difficult to analyze as with the results obtained using the BuFaLo method. The reason for this is because the faces that were detected are all at different profiles. For example, in Figure 23d, the subjects face is a complete profile. It appears that the application had a difficult time handling partial faces (as in Figure 20h) and those images where the subject was located at a farther distance. Also, because of the use of PCA, this application may be dependent on the lighting and coloring of thee images. Therefore, although the results are better, the Face Detection Demo application should not be used.
4.1.1.3 Real Time Face Detector for Face Detection
The following is a table (Table 8) presenting the results of testing the Real Time Face Detector application, which uses edge detection, with the thirteen test images.
TABLE 8. Results of testing Real Time Face Detector application

	Test Image
	Result of Test

	Figure 20a – 20b, 20d – 20e, 20h – 20m
	Face detected (10)

	Figure 20c, 20f – 20g
	Face not detected (3)

The results of testing the Real Time Face Detector application were significantly better than the BuFaLo and Face Detection Demo applications. Of the thirteen tested images, ten were faces detected. This gives an accuracy of 76.92 percent. The images in which a face was not located are Figures 20c, 20f and 20g. With the scan process sending approximately 25 images per second [29], if the potential target contains a face, this application has the best probability of locating that face, of the three investigation applications. The results of the three experiments indicate that this application would be acceptable to use for the purposes of this thesis, given the requirements for facial detection and the capabilities of the Aibo™.
[image: image44.png]

[image: image45.png]
FIG. 24. Examples of detected faces using the Real Time Face Detector

The Real Time Face Detector is the only application, of those tested, that is able to detect faces in the images where the subject is located farther away (in this case approximately thirty-six inches away) (Figure 24). The images in which a face is not located are Figures 20c, 20f and 20g. The reason a face was not detected in Figure 20g may have been because both subject’s faces are not completely in the image. The best viable explanation for non-detection in Figure 20c and 20f may be that both are a profile of the subject. This is especially true in the case of Figure 20f. However, a face was detected in Figure 20m, which is a profile image of the subject. This result conflicts with the speculation that Figures 20a and 20f were not detected because of the profile of the subject.
One possibility for the non-detected faces can be the type of edge detection method used, as was seen in Chapter II, some methods yielded better results than others. However, the particular edge detection method is not given. Overall, the Real Time Face Detector application that uses edge detection can be used to implement the ideas presented in this thesis, as opposed to the other tested applications. As with any application, those presented in this testing are example of face detection methods. Therefore, the decision to use the Real Time Face Detector is based on the performance in testing the thirteen sample images.
4.1.2 Face Recognition
The testing of the face recognition methods involves using existing applications that perform face recognition. The testing is intended to show how the different methods compare to each other given the same test cases. The neural network (Multilayer Perceptron [69]) method is tested using the Faces1 application by Dmitry [12]. To test the eigenfaces method, the Face Recognition System by Rosa is used [70]. Recall that for the purposes of this testing the “Database of Faces” from AT&T™ Laboratories [71]. The testing variables and explanation of why those values are used can be seen in Chapter III.
4.1.2.1 Faces1 for Facial Recognition

The first test using the Faces1 application uses forty images (one image per case) for training. The network was trained for ten epochs. The results of testing forty images (one image per set) are not positive. Of the forty test images, there were thirty-nine incorrect face recognitions. This gives an accuracy of only 2.5 percent. This result is unacceptable. This indicates that there would be large amounts of false recognitions that would waste the time of security officials, as well as those being “recognized.” Although some of the false recognitions were of two people that had similar features, there were also recognitions of subjects that had no visible resemblance.
In this example of ten epochs, the incorrect recognitions that were made were of subjects that had no visible similarities. As a reminder, the reason ten epochs were considered is to compare methods that require no training, normally, the number of epochs would be at least in the thousands. The training image was a woman with an average facial structure and long hair. However, this image was matched with a man who is wearing glasses, has a larger facial structure and has short hair (Figure 25). A similar incorrect match was made when the same man was identified as another woman (Figure 26). Overall, this application with the parameters of one training image and ten training epochs should not be used.
[image: image46.png]
FIG. 25. Incorrect face recognition of s10 as s31 (see Figure 21) by the Faces1 application
[image: image47.png]
FIG. 26. Incorrect face recognition of s32 as s31 (see Figure 21) by the Faces1 application

The second test using the Faces1 application also uses forty images (one image per case) for training. However, in this test, the network is trained for one-hundred epochs. The results of this test (forty images, one per set) yield a better accuracy than with only training the network for ten epochs. Of the forty test cases, there are only ten incorrect recognitions. This gives an accuracy of 75 percent. This result is far better than the results obtained with only ten training epochs. This result of 75 percent accuracy is significantly better. However, this still leaves one-in-four incorrect recognitions which would have to be verified. One difference in this test, compared to the prior test, is that the recognitions that were made were of subjects with similar features.
The false face recognitions that are made were in cases where the falsely identified subjects have very similar features to each other. For example, in Figure 27, both subjects are men with a similar facial structure and hair styles. The second example (Figure 28) is where both subjects have high hairlines, glasses and similar facial structures. This indicates that although a false recognition can occur, it is more likely to be a close match rather than an obvious misclassification. Therefore, this is an application (given appropriate training data and parameters) that should be considered for the implementation of the framework presented in the thesis.
[image: image48.png]
FIG. 27. Incorrect face recognition of s38 as s32 (see Figure 21) by the Faces1 application

[image: image49.png]
FIG. 28. Incorrect face recognition of s37 as s14 (see Figure 21) by the Faces1 application

The third test using the Faces1 application uses two-hundred images (five images per case) for training. The network is trained for ten epochs. As with the first test (one training image, ten epochs), this test does not produce good results, as expected with the low number of training epochs. Of the two-hundred cases, there are one-hundred twenty-nine incorrect face recognitions. This gives an accuracy of only 35.5 percent. This result is also unacceptable. This indicates that there would be large amounts of false face recognitions that would waste the time of security officials, as well as those being “recognized.” This test also gives face recognitions of subjects that have no visible resemblance.

In Figure 29, the training image is a man with a high hairline, glasses and a beard. The image is falsely recognized as a woman with no glasses and no facial hair. Overall, this application with the parameters of two-hundred training images and ten training epochs should not be used.

[image: image50.png]
FIG. 29. Incorrect face recognition of s14 as s35 (see Figure 21) by the Faces1 application

The fourth test using the Faces1 application uses two-hundred images (five images per case) for training. The network is trained for one-hundred epochs. Similar to the second test (one training image and one-hundred epochs), this test produces better results. Of the two-hundred test images (forty test cases); there are only sixteen incorrect face recognitions. This gives an accuracy of 92 percent. This is by far the best result obtained via this software solution of facial recognition.
Of the sixteen incorrect recognitions, the identified case subjects share very similar characteristics. There are no misclassifications that identify significantly different subjects. For example, in Figure 30, false face recognition occurred when the training subject had a thin facial structure, light colored short hair and no facial hair. The recognized image is also of a man with a thin facial structure, light colored short hair and no facial hair. Therefore, Faces1 application, trained with two-hundred images (five training images per set) and one-hundred training epochs performed the best. However, having five images per set is not always possible. As it was presented in Chapter III, the average number of images available per set is only one. This limitation is further discussed in section 4.2.
[image: image51.png]
FIG. 30. Incorrect face recognition of s40 as s18 (see Figure 21) by the Faces1 application

4.1.2.2 Face Recognition System for Facial Recognition

Table 9 presents the test results of the Face Recognition System using five images to build the eigenfaces.
TABLE 9. Results of testing the Face Recognition System application

	 Image Set Number
	Test Result

	1 – 13, 18 – 27, 29 – 31, 33 – 34, 37 – 40
	Face recognized (32)

	14 – 17, 28, 32, 35 – 36
	Face not recognized (8)

The first test of the Face Recognition System application uses five images per set to build the eigenfaces. Of the forty tested images, there are eight incorrect face recognitions. This gives an accuracy of 80 percent. The results of this test seem to indicate that using neural networks for face recognition is a better solution for the purposes of the framework presented in this thesis. However, the availability of five training images is rarely available from the FBI database [3]. This problem is discussed in section 4.2.
The following is a table (Table 10) that presents the test results of the Face Recognition System using one image per set to build the eigenfaces.
TABLE 10. Results of testing the Face Recognition System application

	Image Number
	Test Result

	2 – 3, 5 – 11, 13 – 14, 17 – 34, 38 – 40
	Face recognized (32)

	1, 4, 12, 15 – 16, 35 – 37
	Face not recognized (8)

The second test of the Face Recognition System application uses only one image per set to build the eigenfaces. Of the forty tested images, there are eight incorrect face recognitions. This gives an accuracy of 80 percent. The results of this test indicate that given only one training image, the eigenfaces application for facial recognition is a better method of face recognition for the framework presented in this thesis. However, the accuracy of the same parameters (training data) used with the neural network application (Faces1) is 75 percent. Therefore, the decision of which method to recommend is also based on other factors as well. These factors are discussed in section 4.2.

4.2 Discussion of the Findings

For face detection, the testing indicates that the Real Time Face Detector, which uses edge detection, is the best solution. The accuracy of the testing was 76.92 percent. The Aibo™ is capable of transmitting approximately twenty-five images per second via the wireless LAN connection [29]. Therefore, during the potential target scan process, there will be several images of each of the areas of the potential target. With an accuracy of 76.92, and the fact that the application can detect faces in profile, this is a viable technique for face detection. One thing to consider is the quality of the tested images. If the Aibo™ were used as the mobile agent, the distance and the angle of the image would be different. However, because of the height of the Aibo™, these images were not able to be used for testing. Therefore, images used for testing were taken at a closer distance. The discussion of this limitation of the Aibo™ is presented in Chapter V.
The research and testing of facial recognition methods were more difficult to analyze. At first glance, it appears that the Faces1 application, the neural network approach, is the best solution. When trained with five images per class, this application achieved an accuracy of 92 percent during testing. However, this amount of training data (five images per case) is not typically available. The research presented in this thesis presents the use of the FBI criminal and missing persons database [3] as the source for training images. However, in this source, there is rarely more than one image per set (criminal or missing person). Therefore, only the experiments that used one training image should be considered when deciding which facial recognition method is recommended, especially when using the FBI database as the primary source for training images.
When the Faces1 application was trained with only one image for one-hundred epochs, it achieved an accuracy of 75 percent. This information must be accompanied with the caveat that higher amounts of training epochs are required. Neural networks are trained offline to perfection (or as close as possible). With only one-hundred training epochs, this network was not properly trained. However, one option to consider is that new images are released daily, as well as the occasional image that must be added immediately (escaped prisoner). The framework presented in this thesis is that no additional personnel should be required. In order to re-train a network to perfection every night, as quickly as possible in emergency situations, a person with knowledge of neural networks would be required. However, with the eigenfaces approach, faces are easily and added immediately.

 When the Face Recognition System (the eigenfaces approach) was tested using only one image to build the eigenfaces, an accuracy of 80 percent was achieved. These accuracy results are close enough to consider other factors before making a decision on which face recognition application to use. One factor to consider is that the neural network must be re-trained when new images are introduced. However, in the eigenfaces approach, the new face is simply added to the set of existing eigenfaces. Another factor to consider is that the eigenfaces approach requires less physical memory to store [39]. Therefore, given this information, the eigenfaces approach is recommended for its ease of use. If the availability of training time and personnel is available, then a neural network approach could give higher accuracy.
CHAPTER V

SUMMARY, CONCLUSION AND RECOMMENDATIONS
The framework proposed in this thesis is intended to be a necessary foundation to implement facial recognition on an autonomous robot. In particular, the topics of navigation, target scanning, face detection and facial recognition are presented. The goal of implementing the framework on an appropriate robotic platform is to create a solution to locating criminals and missing persons in locations such as airports. In order to accomplish the goal; navigation, target scanning, face detection and facial recognition are used to:

1) find foreign objects in a known environment

2) scan to locate facial regions

3) identify any located facial region as a criminal or a missing person
Although the framework is by no means a complete security system, it can either be a stand alone system or integrated into another security system. However, in order to achieve a solution that can be implemented, there are limitations associated with using the Aibo™ which would need to be addressed by the use of a different robotic platform.

5.1 Summary of Results

The process of facial recognition is by no means a perfect science as it was presented in Chapter IV. The investigation of this topic shows that there are currently techniques that allow for facial recognition with very good accuracy rates. For example, the BuFaLo application [66] for face detection achieved 76.92 percent accuracy during testing (see Chapter IV for complete testing results). This application, which uses edge detection, was able to identify faces of subjects looking directly at the camera as well as those that are in profile.
The results obtained from testing the facial recognition methods are difficult to analyze. The tested methods of eigenfaces and neural networks both achieved competitive results (see Chapter IV for complete testing results). In particular, the Faces1 application [12] (neural network), achieved 75 percent accuracy during testing. The eigenfaces method, Face Recognition System [70], achieved 80 percent accuracy when tested under the same conditions as the Faces1 application. It is important to realize that these results reflect the capabilities of the tested applications, not the methods of eigenfaces and neural networks. The ultimate decision on which method to employ was made with consideration given to not only performance, but ease of use and maintainability. In the end, the eigenfaces approach offers a solution that is easy to maintain, new faces can be added immediately and requires less physical storage space [39].
The methods of navigation and object scanning were not tested. Instead, possible solutions to these problems were presented. The goal of navigation is to achieve “random” complete area coverage. The navigation process facilitates the search for foreign objects (objects not represented internally). The object scan process goal is to capture images of the foreign objects for the purposes of face detection.
Although the testing performed in this thesis achieved acceptable results, more testing and analysis should be explored. In particular, the exploration of better training methods for the neural network approach should be explored.

The conclusion of this investigation is that facial recognition on an autonomous quadruped robot is possible. Given the state of current techniques of navigation, face detection and facial recognition, this application is not impossible. Although it would not be a perfect system, it could have an acceptable accuracy of detection. However, this is heavily dependent on the proper robotic platform. Overall, the limitations of the Aibo™ hinder its use as the mobile agent for the proposed framework.

5.2 Problems and Additional Platforms

Although the Aibo™ has a good combination of sensors, it is very ineffective for the application proposed in this system. The first problem is the frailty of the Aibo™. If the Aibo™ were deployed, it could easily be damaged (intentionally or otherwise). This limitation, in combination with the cost of the Aibo™ ($1,600 to $2,540 [21]) is reason enough to choose an alternate mobile agent platform.

Another problem with the Aibo™ is its size. The fact that is sits low to the ground makes it a liability in terms of people tripping over it. However, this is not the only problem associated with the limited stature. Other problems can include that it would be easy to steal (put in a bag), and that obtained pictures of the subject are of too poor a quality to analyze. For example, Figure 31 depicts an individual that is seventy-two inches tall.
[image: image52.png]
FIG. 31. Aibo™ with person of 72 inches height (not to scale)

In this particular case, the Aibo™ is thirty-five inches away from the target, represented by a. The value of b (right triangle height) is the height of the person, minus the height of the Aibo™. This yields a b value of sixty-three inches. Given the Pythagorean Theorem (a2 + b2 = c2), the distance c can be determined. This calculation yields a line of sight (c) of 72.07 inches, or six feet (for the given conditions). This means that the image of the facial region will be approximately six feet away, thus yielding a very poor image.
[image: image53.jpg]
FIG. 32. Image taken by Aibo™ with a line of sight (c) of seventy-two inches

The image given in Figure 32 is of too poor a quality to be analyzed for the purposes of facial detection and recognition. Another problem is that the quality of the image captured by the camera does not allow for proper magnification of the facial region. If this enhancement is made, the resulting image becomes pixilated and difficult to evaluate. Aside from vision, other problems include the Aibo’s™ speed and poor ability to maneuver quickly. This makes it difficult to efficiently navigate large areas. Therefore, a different mobile agent should be explored.

5.2.1 Additional Options for the Aibo™

Before a new platform is considered, possible modifications to the Aibo™ and its environment are presented. These modifications could provide additional data and abilities to the platform in order for the successful implementation of the presented framework.

5.2.1.1 Stereoscopic Vision
Aside from using the default vision on the Aibo™, another method of gathering visual images and video is via stereoscopic vision. Although stereoscopic-based vision is not included with the Aibo™, this technique is worth investigating in case another mobile agent is used, or if the Aibo™ is modified. For this application, two cameras are needed. Essentially, the cameras are used together to form a three-dimensional image. The techniques of facial detection, such as those discussed in Chapter II, can also be applied to images obtained with stereoscopic vision. This method is especially good for the detection of motion, as indicated by Matsumoto and Zelinsky [72].

5.2.1.2 Additional Sensors

Although the Aibo™ is equipped with sensors (such as an IR distance sensor) it would be beneficial to have additional information available about the surrounding environment for decision making. If additional sensor readings are available, tasks such as navigation can made more efficient. The addition of sensors yields better external information. Instead, there is currently only data about the area immediately in front of the Aibo™.

One method of gathering environmental data is to incorporate motion sensors in the rooms of the facility. These sensors are inexpensive and are easy to install. One such model, available online at http://www.smarthome.com, sells for less than twenty dollars [73]. With the addition of these sensors in the rooms, it becomes possible to identify where potential target activity is occurring. However, this is not helpful during heavy foot traffic because all sensors would activate. Yet, during times of low foot traffic, searching can be limited to only those active areas.

Another possibility is to install sensors throughout the area. This can be as simple as placing IR emitters and collectors in key locations. These sensors can be used to map out areas for the mobile agent to follow. The mobile agent can constantly be scanning for these emitters. Depending on the path the mobile agent should follow, as determined by the navigation algorithm, these emitters will be toggled to signal the calculated path. This also allows for fast identification of where the mobile agent is currently positioned. In order to insure the validity of these sensors, they should be placed in discrete areas where tampering would be difficult.

One last sensor possibility is that of marking personnel. Given the fact that the mobile agent will be randomly scanning for criminals and missing persons, it is a waste of time and resources to scan employees. Therefore, if employees wear a sensor that identifies them to the mobile agent, scans can be avoided. This sensor can be as simple as an IR emitter powered by a small battery. To insure the security of this method, the signal emitted by this sensor would have to be modified daily.
5.2.1.3 Video Stream

As was discussed in Chapter II, the Aibo™ is capable of streaming video. Therefore, one possible use for this video is that it can be monitored by security personnel. It is important to understand that this is not necessary for the proposed framework. A major benefit of an autonomous application is that human monitoring is not needed. However, if the personnel resource is available, the video can be monitored for suspicious activity.

Another potential use of the video is to scan for dangerous objects. When an unknown object is detected, the application begins to scan for a facial region. However, this is a good time to also search for possibly dangerous objects. This can be accomplished by searching using edge detection. One example is to search for shapes that are indicative of a firearm.

Although searching for certain shapes might be helpful, many dangerous items can be concealed in bags or briefcases. The limitations of the Aibo™ do not allow the internal scanning of personal items. Although the use of x-rays could be a solution to this problem, the bombardment of x-rays around people would be too dangerous to consider. However, an option is to search for abandoned items. If an object is detected and it is determined that it is not a person, an area search can commence. When searching the surrounding area, the mobile agent will still be looking for a target. If a potential target is located, then a facial scan commences. However, if no person is detected in the area, an alert could be sent to authorities that identifies the location of an abandoned object.

Overall, the addition of more sensors to the Aibo™ and its environment would be beneficial to the platform. This data could be shared via the host machine and the use of a wireless LAN of sensors in which each sensor would have its own unique IP address. With more information available, decision making processes (such as searching) can be improved. However, the addition of more data can also slow the processing of information since it now becomes necessary to combine interpretations of various sensor input. This is especially true when considering additional video processing. Therefore, the first step would be to add additional sensors, rather than further video processing.

5.2.2 Alternative Platform

Although an existing mobile agent that is ideal for this proposed framework was not found during the research phase, there are several features that an effective mobile agent should have. The first of these is to have additional cameras at different heights. The ideal visual setup is a camera that can be raised and lowered to a range of at least forty to eighty inches. However, this would come with the tradeoff of a heavier, less maneuverable platform. This allows for a better scan of the facial region. This ability to obtain closer images could yield better results than would otherwise be obtained with the vision provided by the Aibo™.

Based on the previously presented limitations of the Aibo™, the alternate platform must have certain features that aid in navigation and identification. One such feature would be to have stereoscopic vision. This gives a better view of the area, and allows for better facial detection. This can also be improved by having better quality cameras. However, the addition of better imaging is not the only option for a better mobile agent. The addition of more sensors is also beneficial.

The Aibo™ is equipped with an IR distance sensor; however, the field of vision is only in front of the Aibo™. Therefore, the addition of several distance sensors around the new mobile agent would allow targets to be detected on any side of the mobile agent. The ability to find targets can also be augmented through the use of motion sensors. With these additional sensors, the mobile agent is able to locate and process only moving targets.

The mobile agent itself has specific needs for size and mobility. The base of the mobile agent should be wide enough to support the height of the cameras. This also contributes to a heavier agent. This is a benefit as it is more difficult to push the mobile agent over. However, if the agent becomes too large, it can become difficult to navigate in certain areas.

The other concern is maneuverability. The mobile agent should be able to easily navigate and be able to change directions quickly. Due to the weight and size of the agent, this indicates that a wheeled platform is a good choice. If the wheels are allowed to pivot, more maneuverability is gained. This allows not only for speed, but the ability to make sharper turns as well.

Regardless of what mobile agent is chosen or built, it is important (for the purposes of the framework proposed in this thesis) to meet as many of the characteristics presented above. The first of these is the safety of people around the agent. This means having the needed sensors to insure that no collisions occur. The next priority is that the images be of good quality. Given these two characteristics, the agent is suitable for this proposed application.
5.3 Suggestions for Further Study
The research of these topics has found that this application can be implemented completely with off-the-shelf components (as tested in Chapter IV). This does not only include the hardware, but the software as well. In using off-the-shelf components, time and money are saved. This also allows a faster implementation for testing purposes. This testing can then lead to a better in-house solution.
However, the recommendation for furthering this study is to first focus on locating or building a more appropriate platform. In order to achieve acceptable results for the proposed framework, a robotic platform capable of obtaining viable data is required. Without an appropriate mobile agent, the successful implementation of the framework would be difficult. Therefore, the search for a more effective platform would be the next step for future work.
5.4 Conclusion

Although there are currently solutions available for navigation, face detection and face recognition, there is no application that combines all these individual solutions. When these individual solutions are implemented on a robotic platform, a new method of detecting criminals and missing persons is available. However, this system can also be used for personnel authentication, such as in a school. It can be used to insure that only registered students and faculty are present on school grounds.
Once implemented, the process of searching autonomously for specific individuals will be an ideal addition to most security systems. Although the current cost for such a system is high, the benefits are too great to be ignored. Once this process has been further improved, it can hopefully aid not only in the capturing of fugitives, but in the safe return of missing persons. This end result applied in locations such as airports can hopefully aid in keeping people safe.
CHAPTER VI
REFERENCES

[1] Whitehouse.gov, “Homeland Security Home Page,” January 2004, http://www.whitehouse.gov/homeland.
[2] CNN.com, “Airport security - A Work in Progress,” February 2004, http://www.cnn.com/2004/US/02/23/wbr.airport.security/index.html.
[3] FBI.com, “Federal Bureau of Investigation,” September 2004, http://www.fbi.gov /mostwant.htm.

[4] Y. Aloimonos, Ed., Visual Navigation From Biological Systems to Unmanned Ground Vehicles. New Jersey: Lawrence Erlbaum Associates, 1997.

[5] K. Morik, M. Kaiser and V. Klingspor, Eds., Making Robots Smarter Combining Sensing and Action through Robot Learning. Boston: Kluwer Academic Publishers, 1999.
[6] P. I. Corke, Visual Control of Robots High Performance Visual Servoing. Taunton: Research Studies Press LTD, 1996.

[7] N. Ayache, Artificial Vision for Mobile Robots Stereo Vision and Multisensory Perception. London: Mit Press, 1991.

[8] S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition Methods in Soft Computing. New York: Wiley-Interscience, 1999.

[9] L. A. Zadeh. “Fuzzy Sets,” in Journal of Information and Control, 1965, pp. 338-353.
[10] M. Yang, D. J. Kriegman, and N. Ajuja, “Detecting Faces in Images – A Survey,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002.
[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Second Edition, New Jersey: Prentice Hall, 2003.

[12] B. Dmitry, “Face Recognition Demonstration,” December 2004, http://neuroface.narod.ru/.
[13] M. Negnevitsky, Artificial Intelligence A Guide to Intelligent Systems. London: Addison Wesley, 2002.

[14] H. A. Rowley, S. Baluja, and T. Kanade, “Rotation Invariant Neural Network-Based Face Detection,” in Proc. of Computer Vision and Pattern Recognition, 1998.

[15] Sony Corporation ©, “Aibo Global Link,” December 2004, http://www.sony.net/Products/aibo/index.html.
[16] T. Stǻlhane and S. H. Houmb, “Autonomous AIBO watchman,” Norwegian University of Technology and Science, NTNU, 2003.

[17] USATODAY.com, “Oakland airport: 'Smile for the camera',” October 2001, http://www.usatoday.com/tech/news/2001/10/18/airport-camera.htm.
[18] Imagis Technologies Inc., “Facial Recognition Overview,” September 2004, http://www.imagistechnologies.com.
[19] Imagis Technologies Inc., “Imagis White Paper - Facial Recognition and Airport Security,” Imagis Technologies Inc., 2004.

[20] California State University, Chico, “Intelligent Systems Laboratory,” August 2004, http://www.gotbots.org.
[21] Google Inc., “Froogle,” November 2004, www.froogle.com.

[22] Sony Corporation ©, Entertainment Robot AIBO™ ERS-220 Operating Instructions. Sony Corporation, 2001.

[23] Sony Corporation ©, AIBO™ Wireless LAN Card Operating Instructions. Sony Corporation, 2000.

[24] Sony Corporation ©, “Sony USA,” December 2004, http://www.sony.com.

[25] Sony Corporation ©, “AIBO SDE Homepage,” November 2004, http://openr.aibo.com.

[26] Aibo-Friends, “Aibo-Friends,” November 2004, www.aibo-friends.com.

[27] Whatis.com, “Whatis.com, the leading IT encyclopedia and learning center,” November 2004, www.whatis.com.

[28] Aibohack, “AiboPet’s Main Page,” September 2004, www.aibohack.com.

[29] Carnegie Mellon University. “Tekkotsu Development Framework for AIBO Robots,” November 2004, www.tekkotsu.org.

[30] A. Gomea, F. Large, T. Fraichard, and C. Laugier. “High-Speed Autonomous Navigation with Motion” in Conf. on Intelligent Robots and Systems - Sendai (JP), 2004.
[31] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. New York: Cambridge University Press, 2000.

[32] Ed. D. Kortenkamp, R. Bonasso, and R. Murphy, Eds., Artificial Intelligence and Mobile Robots – Case Studies of Successful Robot Systems. Menlo Park: AAAI Press, 1998.
[33] Wikipedia, “Wikipedia. The Free Encyclopedia,” November 2004, http://www.wikipedia.org.

[34] M. Yang, “Recent Advances In Face Detection,” Honda Research Institute, 2004.

[35] D. Gorodnichy, “Facial Recognition in Video,” in Proc, of LAPR Int. Conf on Audio-Based Biometric Person Authentication, Guildford, UK, 2003.

[36] S. Scalet, “Glossary – Security & Privacy Research Center – CIO,” December 2004, http://www.cio.com/research/security/edit/glossary.html.
[37] Dr. R. Frischhol, “The Face Detection Homepage,” September 2004, http://home.t-online.de/home/Robert.Frischholz/face.htm.

[38] J. Kapur, “Face Detection in Color Images,” November 2004, http://www.geocities.com/jaykapur/face.html.

[39] M. Turk, and A. Pentland, “Eigenfaces For Recognition,” in Journal of Cognitive Neuroscience, 1991.

[40] L. Smith, A Tutorial on Principal Components Analysis, 2002, http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.

[41] B. Menser, and F Aachen, “Face Detection in Color Images Using Principal Components Analysis, University of Technology, Germany, 1999.
[42] M. Störring, H. Anderson, and E. Granum, “Skin colour detection under changing lighting conditions,” presented at 7th Symposium on Intelligent Robotics Systems, Coimbra, Portugal, 1999.
[43] B. S. Venkatesh, S. Palanivel, and B. Yegnanarayana, “Face Detection and Recognition in an Image Sequence using Eigenedginess,” Indian Institute of Technology, 2002.
[44] P. Reignier, “Finding a face by blink detection,” November 2004, http://www-prima.imag.fr/ECVNet/IRS95/node13.html.

[45] H. Moon, “Optimal Edge-Based Shape Detection,” November 2004, http://www.cfar.umd.edu/~hankyu/shape_html/.

[46] The MathWorks Inc., “The MathWorks – MATLAB and Simulink for Technical Computing,” November 2004, http://www.mathworks.com/.

[47] T. J. Ross, Fuzzy Logic With Engineering Applications. New York: McGraw-Hall Inc., 1995.

[48] T. Darrell, G. Gordon, M. Harville, and J. Woodfill. Integrated person tracking using stereo, color, and pattern detection. Interval Research Corp. Palo Alto CA, 1998.

[49] America’s Most Wanted, “America’s Most Wanted with John Walsh,” December 2004, http://www.amw.com/.
[50] G. Sukthankar. Face Recognition: A Critical Look at Biologically-Inspired Approaches. Carnegie Mellon University, January, 2000.
[51] J. Zhang, Y. Yan and M. Lades. “Face Recognition: Eigenface, Elastic Matching, and Neural Nets,” Proc. of the IEEE, September 1997.
[52] C. M. Bishop, Neural Networks for Pattern Recognition. New York: Oxford University Press Inc., 1995.
[53] C. Stergiou and D. Siganos, “NEURAL NETWORKS,” November 2004, http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#Pattern%20Recognition%20-%20an%20example.

[54] T. Kohonen, Self-Organizing Maps. Berlin: Springer-Verlag, 1995.
[55] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face Recognition: A Convolutional Neural Network Approach,” IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition, 1997.

[56] The University of Queensland, Brisbane, Australia, “Competitive Learning,” September 2004, http://www.itee.uq.edu.au/~cogs2010/cmc/chapters/SOM/index2.html.

[57] P. Marrone, “JOONE™ - Java Object Oriented Neural Engine,” September 2004, http://www.joone.org.
[58] R. A. Monzingo, and T. W. Miller, Introduction to Adaptive Arrays, New York: J. Wiley and Sons, 1980.
[59] University of California, San Diego, “Neural Network Toolbox,” November 2004, http://www-ccs.ucsd.edu/matlab/toolbox/nnet/newlin.html.

[60] The University of Birmingham, “Kohonen Networks,” November 2004, http://www.cs.bham.ac.uk/resources/courses/SEM2A2/Web/Kohonen.htm.
[61] Universida Politecnica de Madrid, “Competitive Learning Networks,” September 2004, http://www.gc.ssr.upm.es/inves/neural/ann1/unsupmod/CompetLe/CompetLe.htm.

[62] Carnegie Mellon University, “Neural Networks for Face Recognition,” September 2004, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html.

[63] University of Colorado, “Artificial Neural Networks,” November 2004, http://www.cs.colorado.edu/~grudic/teaching/CSCI5622_2004/NeuralNetwork.pdf.

[64] D. Bryliuk, and V. Starovoitov, “Access Control By Face Recognition Using Neural Networks,” presented at 2nd International Conference on Artificial Intelligence, Crimea, Ukraine, 2002.

[65] Drexel University, “Eigenface Tutorial,” September 2004, http://www.pages.drexel.edu/~sis26/Eigenface%20Tutorial.htm.

[66] F. Fritze, “Base-unit for Face Localization,” December 2004, http://www.geocities.com/fritzfra2001.

[67] Fraunhofer-Gesellschaft Inc., “Fraunhofer IIS – Imaging – Biometrics,” January 2005, http://www.iis.fraunhofer.de/bv/biometrie/download/index.html.
[68] C. Garcia and M. Delakis, “Face Detection Demo,” January 2005, http://aias.csd.uch.gr:8999/cff/.

[69] B. D. Ripley, Pattern Recognition and Neural Networks. New York: Cambridge University Press, 1996.
[70] L. Rosa, “Matlab Code Generation and Optimization,” December 2004, http://utenti.lycos.it/matlab.
[71] AT&T™ Laboratories Cambridge. “The ORL face database,” January 2005, http://www.uk.research.att.com/pub/data/att_faces.zip.

[72] Y. Matsumoto, and A. Zelinsky. “An Algorithm for Real-time Stereo Vision Implementation of Head Pose and Gaze Direction Measurement,” presented at Fourth IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 2000.

[73] Smarthome. “Smarthome,” December 2004, http://www.smarthome.com.
APPENDIX A. Installing and Running Tekkotsu

The following is a list of instructions on how to install Tekkotsu [1] and the Open-R SDK [2] on the Windows© operating system. These set of instructions was composed from the Tekkotsu [1] website.
1) Go to the open-r website (http://openr.aibo.com) and download the following files:

a. OPEN-R SDK for ERS-7/ERS-200 series
i. OPEN_R_SDK-1.1.5-r3.tar.gz
b. Sample Programs
i. OPEN_R_SDK-sample-1.1.5-r2.tar.gz
c. MIPS cross-development tools for Cygwin
i. mipsel-devtools-3.3.2-bin-r1.tar.gz
d. Cygwin binaries
i. cygwin-packages-1.5.5-bin.exe
2) How to install Cygwin
a. Double click on cygwin-packages-1.5.5-bin.exe
b. When asked where to unzip, select C:\

c. In the newly created directory, double click on setup.exe

i. Follow the setup instructions

3) How to install MIPS cross-development tools

a. Move mipsel-devtools-3.3.2-bin-r1.tar.gz to c:/cygwin/usr/local

b. Start Cygwin

c. Enter the following commands:

i. cd c:/cygwin/usr/local

ii. tar xzf mipsel-devtools-3.3.2-bin-r1.tar.gz
4) How to install Open-R SKD
a. Move OPEN_R_SDK-1.1.5-r3.tar.gz to c:/cygwin/usr/local

b. Type the following command:

i. Make sure you are in the c:/cygwin/usr/local directory

ii. tar xzf OPEN_R_SDK-1.1.5-r3.tar.gz
5) How to install the sample programs
a. Move OPEN_R_SDK-sample-1.1.5-r2.tar.gz to c:/cygwin/usr/local

b. Type the following command:

i. Make sure you are in the c:/cygwin/usr/local directory

ii. tar xzf OPEN_R_SDK-sample-1.1.5-r2.tar.gz
6) How to install Rsync (optional)

a. Download rsync-2.6.3.tar.gz from http://samba.anu.edu.au/rsync/ to c:/cygwin/usr/local

b. Type the following commands:

i. Make sure you are in the c:/cygwin/usr/local directory

ii. tar xzf rsync-2.6.3.tar.gz

iii. Move to the newly created directory

iv. ./configure

v. make

vi. make install

7) How to install Java™

a. Download J2SE (Core/Desktop) from http://java.sun.com/
i. Follow the installation instructions
ii. In Cygwin enter the following commands:
1. cd C:\cygwin\etc
2. using an editor, open the “profile” file
a. add “/cygdrive/c/j2sdk1.4.2_04/bin to the path
8) How to install Tekkotsu
a. Go to http://www-2.cs.cmu.edu/~tekkotsu/index.html to download Tekkotsu framework to c:/cygwin/usr/local

i. From Cygwin, enter the following commands
1. cd c:/cygwin/usr/local

2. tar xzf Tekkotsu_2.2.2.tar.gz

3. Enter the newly created Tekkotsu directory

a. Enter the project directory

b. Make the following changes to the Makefile

i. TEKKOTSU_ROOT ?= /usr/local/Tekkotsu_2.2.2
ii. MEMSTICK_ROOT ?= /path_of_memorystick
c. Go to the C:\cygwin\usr\local\Tekkotsu_2.0\project\ms\open-r\system\conf directory

i. Modify the wlandflt.txt file appropriately to match your wireless settings

d. From the Tekkotsu website, download and extract the precompiled memory stick ERS-2xx to your memory stick
9) How to run TekkotsuMon
a. Start Cygwin

b. Navigate to TekkotsuMon directory
i. cd /cygwin/usr/local/Tekkotsu_2.0/tools/mon

c. Connect to the Aibo™

i. ./ControllerGUI [IP address of AIBO™]

[1] Carnegie Mellon University. “Tekkotsu Development Framework for AIBO Robots,” November 2004, www.tekkotsu.org.

[2] Sony Corporation ©, “Sony USA,” December 2004, http://www.sony.com.

APPENDIX B. MATLAB® Edge Detection Code
%Get the image

Image = imread(‘filename of image’);

%Display the image

imshow(Image);

%Convert the image to black and white

BWImage = rgb2gray(Image);

%Display the new image

imshow(BWImage);

%Sobel Method

NewImage = edge(BWImage,’sobel’);

%Prewitt Method

NewImage = edge(BWImage,’prewitt’);

%Roberts Method

NewImage = edge(BWImage,’roberts’);

% Laplacian of Gaussian Method

NewImage = edge(BWImage,’log’);

% Zero-Cross Method

NewImage = edge(BWImage,’zero-cross’);

% Canny Method

NewImage = edge(BWImage,’canny’);
� Partially funded by the National Science Foundation (NSF) Major Research Instrumentation (MRI)/Research in Undergraduate Institutions (RUI) grant EIA-0321385 for 2003-2006.

PAGE
113

